Advertisement

Zukunft der globalen Geodäsie und Fernerkundung aus Sicht des Deutschen GeoForschungsZentrum (GFZ), Potsdam

  • Harald SchuhEmail author
  • Jens Wickert
  • Mike Sips
  • Tilo Schöne
  • Christian Rogaß
  • Sigrid Roessner
  • Rolf König
  • Volker Klemann
  • Robert Heinkelmann
  • Henryk Dobslaw
  • Georg Beyerle
Chapter
  • 1.8k Downloads
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Die Technologien und Methoden der Globalen Geodäsie und Fernerkundung (GGF) haben sich in den vergangenen Dekaden mit rascher Geschwindigkeit weiterentwickelt und die Resultate der heutigen GGF liefern wichtige Grundlagen für die geo- und naturwissenschaftlichen Nachbarsdisziplinen. Der Artikel ist das Ergebnis eines intensiven GFZ-internen Denk- und Diskussionsprozesses über die Weiterentwicklung der GGF bis über das Jahr 2030 hinaus. Basierend auf dem zu erwartenden technologischen Fortschritt in Computer- und Satellitentechnik verbunden mit der Nutzung bahnbrechender neuer Entwicklungen der Atom- und Laserphysik ist mit einer Vielzahl von spektakulären Neuerungen in der GGF zu rechnen. Hierzu gehören z. B. die Nutzung der Quantenmechanik für hochgenaue Uhren zur präzisen Bestimmung der Gravitationsbeschleunigung und letztendlich zur Höhenmessung oder der Einsatz von Schwärmen kostengünstiger Klein- oder Kleinstsatelliten zur Erdbeobachtung. In der Fernerkundung bieten neue Sensoren in Verbindung mit innovativen Prozessierungsverfahren und einer Vielzahl von nationalen und internationalen Satellitenmissionen großartige Möglichkeiten der zukünftigen Erdbeobachtung. Auf der Seite der Modellierung spielen die dynamischen Wechselwirkungen zwischen den Komponenten des Erdsystems (Feste Erde, Atmosphäre, Ozeane, Hydrosphäre, Kryosphäre, Biosphäre) ergänzt um den Einfluss des Menschen (Anthroposphäre) eine Schlüsselrolle. Eine wichtige Grundvoraussetzung für die Erfassung von Veränderungen im System Erde ist die Definition, Realisierung und Aufrechterhaltung eines globalen geodätischen Referenzrahmens, wie es erst kürzlich in einer Resolution der Vereinten Nationen (Resolution 69/266, angenommen am 26.02.2015) gefordert wurde. Das Global Geodetic Observing System (GGOS) der IAG (International Association of Geodesy) bündelt als Leitprojekt dieser Dekade alle internationalen Aktivitäten der Geodäsie.

Schlüsselwörter

Geodätische Weltraumverfahren GNSS (Global Navigation Satellite Systems) VLBI (Very Long Baseline Interferometry) SLR (Satellite Laser Ranging) Fernerkundung Quantenmechanik 

Literatur

  1. 1.
    Aguilera, D., Ahlers, H., Battelier, B., Bawamia, A., Bertoldi, A., Bondarescu, R., Bongs, K., Bouyer, P., Braxmaier, C., Cacciapuoti, L., Chaloner, C., Chwalla, M., Ertmer, W., Franz, M., Gaaloul, N., Gehler, M., Gerardi, D., Gesa, L., N. Gürlebeck, Hartwig, J., Hauth, M., Hellmig, O., Herr, W., Herrmann, S., Heske, A., Hinton, A., Ireland, P., Jetzer, P., Johann, U., Krutzik, M., Kubelka, A., C. Lämmerzahl, Landragin, A., Lloro, I., Massonnet, D., Mateos, I., Milke, A., Nofrarias, M., Oswald, M., Peters, A., Posso-Trujillo, K., Rasel, E., Rocco, E., Roura, A., Rudolph, J., Schleich, W., Schubert, C., Schuldt, T., Seidel, S., Sengstock, K., Sopuerta, C.F., Sorrentino, F., Summers, D., Tino, G.M., Trenkel, C., Uzunoglu, N., von Klitzing, W., Walser, R., Wendrich, T., Wenzlawski, A., Weßels, P., Wicht, A., Wille, E., Williams, M., Windpassinger, P., Zahzam, N.: STE-QUEST – Test of the universality of free fall using cold atom interferometry. Class. Quantum Gravity 31(11), 115010 (2014). doi: 10.1088/0264-9381/31/11/115010
  2. 2.
    Altamimi, Z., Collilieux, X., Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473 (2011). doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  3. 3.
    Angermann, D., Gerstl, M., Sánchez, L., Gruber, T., Hugentobler, U., Steigenberger, P., Heinkelmann, R.: GGOS bureau for standards and conventions: inventory of standards and conventions for geodesy. In: IAG Symposia 143. Springer, Berlin/Heidelberg (im Druck) (2015)Google Scholar
  4. 4.
    Argus, D.F., Peltier, W.R.: Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophys. J. Int. 181, 697–723 (2010). doi: 10.1111/j.1365-246x.2010.04562.x Google Scholar
  5. 5.
    Bar-Sever, Y., Haines, B., Bertiger, W., Desai, S., Wu, S.: Geodetic reference antenna in space (GRASP) – a mission to enhance space-based geodesy. In: COSPAR Colloquium: Scientific and Fundamental Aspects of the Galileo Program, Padua (2009). http://ilrs.gsfc.nasa.gov/docs/GRASP_COSPAR_paper.pdf. Zugegriffen am 09.04.2015
  6. 6.
    Becker, S., Freiwald, G., Losch, M., Schuh, W.-D.: Rigorous fusion of gravity field, altimetry and stationary ocean models. J. Geodyn. 59–60, 99110 (2012). doi: 10.1016/j.jog.2011.07.006 Google Scholar
  7. 7.
    Bender, M., Dick, G., Ge, M., Wickert, Z.D.J., Kahle, H.-G., Raabe, A., Tetzlaff, G.: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 47(10), 1704–1720 (2011). doi: 10.1016/j.asr.2010.05.034 CrossRefGoogle Scholar
  8. 8.
    Bergmann-Wolf, I., Zhang, L., Dobslaw, H.: Global eustatic sea-level variations for the ap-proximation of geocenter motion from grace. J. Geodetic Sci. 4(1), 37–48 (2014). doi: 10.2478/jogs-2014-0006 CrossRefGoogle Scholar
  9. 9.
    Beutler, G., Jäggi, A., Mervart, L., Meyer, U.: The celestial mechanics approach: Theoretical foundations. J. Geodesy 84, 605–624 (2010). doi: 10.1007/s00190-010-0401-7 CrossRefGoogle Scholar
  10. 10.
    Bianco, G., Noll, C., Pearlman, M.: The international laser ranging service: Past, present and future. In: 19th International Workshop on Laser Ranging, Annapolis (2014). http://cddis.gsfc.nasa.gov/lw19/docs/2014/Presentations/3168_Bianco_presenttion.pdf. Zugegriffen am 05.08.2015
  11. 11.
    Bjerhammar, A.: Relativistic geodesy. NOAA Technical Report NOS 118 NGS 36. National Oceanic and Atmospheric Administration, Rockville (1986). www.ngs.noaa.gov/PUBS_LIB/RelativisticGeodesy_TR_NOS118_NGS36.pdf. Zugegriffen am 24.03.2015
  12. 12.
    Bondarescu, R., Bondarescu, M., Hetényi, G., Boschi, L., Jetzer, P., Balakrishna, J.: Geophysical applicability of atomic clocks: Direct continental geoid mapping. Geophys. J. Int. 191, 78–82 (2012). doi: 10.1111/j.1365-246X.2012.05636.x CrossRefGoogle Scholar
  13. 13.
    Böhm, J., Schuh, H. (Hrsg.): Atmospheric Effects in Space Geodesy. Springer, Berlin/Heidelberg (2013)Google Scholar
  14. 14.
    Bundesamt für Kartographie und Geodäsie: The global geodetic observing system portal (GGOS Portal) (2010). www.ggos-portal.org. Zugegriffen am 20.04.2015
  15. 15.
    Bundesamt für Kartographie und Geodäsie: Geodätisches Observatorium Wettzell: Ergebnisse des Ringlasers (2015). http://www.bkg.bund.de/nn_178496/Wettzell/DE/Verzeichnisbaum/Laserkreisel/Ergebnisse/Ergebnisse__node.html__nnn=true. Zugegriffen am 24.03.2015
  16. 16.
    Bürgmann R., Dresen, G.: Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Ann. Rev. Earth Planet. Sci. 36, 531–567 (2008). doi: 10.1146/annurev.earth.36.031207.124326 CrossRefGoogle Scholar
  17. 17.
    Bürgmann R., Rosen, P.A., Fielding, E.J.: Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Ann. Rev. Earth Planet. Sci. 28, 169209 (2000). doi: 10.1146/annurev.earth.28.1.169 CrossRefGoogle Scholar
  18. 18.
    Butler, D.: Earth observation enters next phase. Nature 508, 160161 (2014)Google Scholar
  19. 19.
    Cacciapuoti, L., Salomon, C.: Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Spec. Top. 172(1), 57–68 (2009). doi: 10.1140/epjst/e2009-01041-7 CrossRefGoogle Scholar
  20. 20.
    California Institute of Technology.: SWOT: Home page (2009). https://swot.jpl.nasa.gov. Zugegriffen am 27.04.2015
  21. 21.
    California Institute of Technology.: HyspIRI mission study website (2010). http://hyspiri.jpl.nasa.gov/. Zugegriffen am 27.04.2015
  22. 22.
    California Institute of Technology.: Jason-3 (2013). https://sealevel.jpl.nasa.gov/missions/jason3. Zugegriffen am 24.03.2015
  23. 23.
    California Institute of Technology.: Gravity recovery and climate experiment follow-on (2015). www.jpl.nasa.gov/missions/gravity-recovery-and-climate-experiment-follow-on-grace-fo. Zugegriffen am 24.03.2015
  24. 24.
    Cazenave, A., Dominh, K., Guinehut, S., Berthier, É., Llovel, W., Ramillien, G., Ablain, M., Larnicol, G.: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet. Change 65, 83–88 (2009)CrossRefGoogle Scholar
  25. 25.
    Clark, T.A., Counselman, C.C., Ford, P.G., Hanson, L.B., Hinteregger, H.F., Klepczynski, W.J., Knight, C.A., Robertson, D.S., Rogers, A.E.E., Ryan, J.W., Shapiro, I.I., Whitney, A.R.: Synchronization of clocks by very-long-baseline interferometry. IEEE Trans. Instrum. Meas. 28(3), 184–187 (1979). doi: 10.1109/TIM.1979.4314802 CrossRefGoogle Scholar
  26. 26.
    Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81(3), 1051–1129 (2009). doi: 10.1103/RevModPhys.81.1051 CrossRefGoogle Scholar
  27. 27.
    Crutzen, P.J.: Geology of mankind. Nature 415, 23 (2002). doi: 10.1038/415023a CrossRefGoogle Scholar
  28. 28.
    Dean J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Commun. ACM 51(1), 113 (2008)CrossRefGoogle Scholar
  29. 29.
    Deutsches Geodätisches Forschungsinstitut (DGFI): GGOS bureau for standards and conventions (2012). http://www.dgfi.tum.de/en/international-services/ggos-bureau-standards-and-conventions. Zugegriffen am 09.04.2015
  30. 30.
    Deutsches Zentrum für Luft- und Raumfahrt.: TerraSAR-X – Deutschlands Radar-Auge im All (2007). www.dlr.de/terrasar-x. Zugegriffen am 24.03.2015
  31. 31.
    Deutsches Zentrum für Luft und Raumfahrt.: Halo-homepage (2008). www.halo.dlr.de. Zugegriffen am 21.04.2015
  32. 32.
    Deutsches Zentrum für Luft- und Raumfahrt.: TanDEM-X – Die Erde in drei Dimensionen (2009). www.dlr.de/tandem-x. Zugegriffen am 24.03.2015
  33. 33.
    Deutsches Zentrum für Luft- und Raumfahrt.: Welcome to EnMAP. The German spaceborne imaging spectrometer mission (2012). www.enmap.org. Zugegriffen am 24.03.2015
  34. 34.
    Dobslaw, H., Bergmann-Wolf, I., Dill, R., Forootan, E., Klemann, V., Kusche, J., Sasgen, I.: The updated ESA Earth system model for future gravity mission simulation studies. J. Geod. online (2015). doi: 10.1007/s00190-014-0787-8 Google Scholar
  35. 35.
    Dransfield, M.H., Christensen, A.N.: Performance of airborne gravity gradiometers. Lead. Edge 32(8), 908–922 (2013). doi: 10.1190/tle32080908.1 CrossRefGoogle Scholar
  36. 36.
    Elsaka, B., Jean-Claude, R., Brieden, P., Reubelt, T., Kusche, J., Flechtner, F., Iran Pour, S., Sneeuw, N., Müller, J.: Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J. Geodesy 88, 31–43 (2014). doi: 10.1007/s00190-013-0665-9 CrossRefGoogle Scholar
  37. 37.
    Elsaka, B., Ilk, K.-H., Alothman, A.: Mitigation of oceanic tidal aliasing errors in space and time simultaneously using different repeat sub-satellite tracks from pendulum-type gravimetric mission candidate. Acta Geophys. 63(1), 301–318 (2015). doi: 10.2478/s11600-014-0251-4 CrossRefGoogle Scholar
  38. 38.
    European Space Agency: Sentinel-2 (2012). www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2. Zugegriffen am 24.03.2015
  39. 39.
    European Space Agency: Sentinel-3 (2013). www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3. Zugegriffen am 24.03.2015
  40. 40.
    European Space Agency: Altimetry missions (2014). www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Altimetry_missions. Zugegriffen am 24.03.2015
  41. 41.
    European Space Agency Earth Observation Portal: Chang’e-3 moon-landing mission (2015). https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/chang-e-3. Zugegriffen am 09.04.2015
  42. 42.
    Famiglietti, J.S., Rodell, M.: Water in the balance. Science 340(61), 1300–1301 (2013). doi: 10.1126/science.1236460 CrossRefGoogle Scholar
  43. 43.
    Feng, Y., Rizos, C.: Network-based geometry-free three carrier ambiguity resolution and phase bias calibration. GPS Solut. 13(1), 4356 (2009)Google Scholar
  44. 44.
    Fernandez-Prades, C., Presti, L.L., Falletti, E.: Satellite radiolocalization from GPS to GNSS and beyond: novel technologies and applications for civil mass market. Proc. IEEE 99(11), 1882–1904 (2011). doi: 10.1109/JPROC.2011.2158032 CrossRefGoogle Scholar
  45. 45.
    Flechtner, F., Morton, P., Watkins, M., Webb, F.: Status of the GRACE follow-on mission. In: Proceedings of the International Association of Geodesy Symposia Gravity, Geoid and Height System, 2012, Venice. IAGS-D-12-00141 (2015)Google Scholar
  46. 46.
    Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., Güntner, A.: What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? - Surveys in Geophysics 37(2), 453-470 (2016). doi: 10.1007/s10712-015-9338-y Google Scholar
  47. 47.
    Forsberg, R., Olesen, A.V.: Airborne gravity field determination. In: Xu, G. (Hrsg.) Sciences of Geodesy I – Advances and Future Directions, Reference and Handbook, S. 83–104. Springer, Berlin/Heidelberg (2010)Google Scholar
  48. 48.
    Fu, L.-L., Cazenave, A.: Satellite Altimetry and Earth Sciences – A Handbook of Techniques and Applications, 463S. Academic, San Diego (2001)Google Scholar
  49. 49.
    Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., Schuh, H.: Tightly coupled integration of ionosphere-constrained precise point positioning and inertial navigation systems. Sensors 15, 5783–5802 (2015)CrossRefGoogle Scholar
  50. 50.
    Gaspar, P., Ogor, F., Le Traon, P.-Y., Zanife, O.-Z.: Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. J. Geophys. Res. 99(C12), 24981–24994 (1994). doi: 10.1029/94jc01430 CrossRefGoogle Scholar
  51. 51.
    Ge, M., Zhang, H., Jia, X., Song, S., Wickert, J.: What is achievable with the current compass constellation? GPS World 23(11), 29–34 (2012)Google Scholar
  52. 52.
    Gill, E., Montenbruck, O., Arichandran, K., Tan, H.S., Bretschneider, H.: High-precision onboard orbit determination for small satellites – the GPS-based XNSon X-SAT. In: Warmbein, B. (Hrsg.) Proceedings of the 4S Symposium: Small Satellites, Systems and Services, 20—24 Sept 2004, La Rochelle. ESA SP-571 veröffentlicht auf CDROM. id.47.1 (2004)Google Scholar
  53. 53.
    Giorgi, G., Teunissen, P.J.G.: GNSS carrier phase-based attitude determination. In: Agarwal, R.K. (Hrsg.) Recent Advances in Aircraft Technology, S. 193–220. InTech Publishing (2012). ISBN:978-953-51-0150-5Google Scholar
  54. 54.
    Gleason, S., Gebre-Egziabher, D. (Hrsg.): GNSS applications and methods, 530 Seiten. Artech House, Norwood. ISBN:978-1-59693-329-3 (2009)Google Scholar
  55. 55.
    Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 228, 11471153 (1985)CrossRefGoogle Scholar
  56. 56.
    Goldstein, R.: Atmospheric limitations to repeat-track radar interferometry. Geophys. Res. Lett. 22(18), 2517–2520 (1995). doi: 10.1029/95gl02475 CrossRefGoogle Scholar
  57. 57.
    Gordon, E.M.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)Google Scholar
  58. 58.
    Greff-Lefftz, M., Métivier, L., Besse, J.: Dynamic mantle density heterogeneities and global geodetic observables. Geophys. J. Int. 180(3), 1080–1094 (2010). doi: 10.1111/j.1365-246x.2009.04490.x CrossRefGoogle Scholar
  59. 59.
    Gruber, T., Bamber, J.L., Bierkens, M.F.P., Dobslaw, H., Murböck, M., Thomas, M., van Beek, L.P.H., van Dam, T., Vermeersen, L.L.A. (Bert), Visser, P.: Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst. Sci. Data 3(1), 1935 (2011). doi: 10.5194/essd-3-19-2011
  60. 60.
    Gruber, T., Murböck, M., NGGM-D Team (Hrsg.): e2.motion – Earth system mass transport mission (square) – concept for a next generation gravity field mission. Final report of project satellite gravimetry of the next generation (NGGM-D). Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften. Reihe B. Angewandte Geodäsie. Heft 318. C.H. Beck, München (2014)Google Scholar
  61. 61.
    Guanter, L., Estellés, V., Moreno, J.: Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 109(1), 54–65 (2007). doi: 10.1016/j.rse.2006.12.005
  62. 62.
    Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader, S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Mühle, H., Müller, R., Habermeyer, M., Ohndorf, A., Hill, J., Buddenbaum, H., Hostert, P., van der Linden, S., Leitão, P.J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., Mauser, W., Hank, T., Locherer, M., Rast, M., Staenz, K., Sang, B.: The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 7(7), 8830–8857 (2015). doi: 10.3390/rs70708830
  63. 63.
    Gustavson, T.L., Landragin, A., Kasevich, M.A.: Rotation sensing with a dual atom-interferometer Sagnac gyroscope. Class. Quantum Grav. 17, 2385 (2000). doi: 10.1088/0264-9381/17/12/311 CrossRefGoogle Scholar
  64. 64.
    Haagmans, R., Siemes, C., Massotti, L., Silvestrin, P., Carraz, O.: ESA’s Activities related to Next Generation Gravity Mission Concepts. Vortrag Grace Science Team Meeting (2014). http://www.gfz-potsdam.de/grace/gstm/gstm-2014
  65. 65.
    Hagedoorn, J., Greiner-Mai, H., Ballani, L.: Core-Mantle coupling: Part III: gravitational coupling torques. Scientific technical report 12/01, Potsdam Deutsches GeoForschungsZentrum GFZ (2012). doi: 10.2312/GFZ.b103-12019 Google Scholar
  66. 66.
    He, K., Xu, G., Xu, T., Flechtner, F.: GNSS navigation and positioning for the GEOHALO experiment in Italy, GPS Solutions. Published online 13 Dec 2014. (2014). doi: 10.1007/s10291-014-0430-4
  67. 67.
    Hein, G.W., Avila Rodriguez, J.A., Wallner, S., Eissfeller, B., Pany, T., Hartl, P.: Envisioning a future: GNSS system of systems (Part 1, 2 & 3). Inside GNSS (2007). Ausgaben Jan./Feb. 2007, S. 58–61; März/April 2007, S. 64–72; Mai/Juni 2007, S. 64–73. http://www.insidegnss.com/auto/Jan%20Feb%2007-WorkingPapers.pdf; http://www.insidegnss.com/auto/Mar%20Apr%2007-workingpapersFinal.pdf; http://www.insidegnss.com/auto/mayjune07_064-073.pdf. Zugegriffen am 06.08.15
  68. 68.
    Helmert, R.F.: Die mathematischen und physikalischen Theorien der Höheren Geodäsie, Band I. Verlag Teubner, Leipzig (1880)Google Scholar
  69. 69.
    Helmholtz-Zentrum Potsdam: Gravity recovery and climate experiment-follow-on (GRACE-FO) mission (2015). www.gfz-potsdam.de/grace-fo. Zugegriffen am 24.03.2015
  70. 70.
    Hinderer, J., Crossley, D., Warburton, R.: Gravimetric methods – superconducting gravity meters. In: Herring, T.A. (Hrsg.) Treatise on Geophysics. Physical Geodesy, Bd. 3, S. 65–122. Elsevier, Oxford (2009)Google Scholar
  71. 71.
    Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System. Theory and Practice. Springer, Wien (2001). doi: 10.1007/978-3-7091-6199-9 CrossRefGoogle Scholar
  72. 72.
    Ichikawa, R., Takiguchi, H., Kimura, M., Ishii, A., Hobiger, T., Koyama, Y., Kondo, T., Takahashi, Y., Tsuchiya, S., Nakagawa, F., Nakamura, M., Tabuchi, R., Hama, S., Gotoh, T., Fujieda, M., Aida, M., Tingyu, L., Amagai, J.: Precise frequency transfer experiments using VLBI and other techniques. In: Proceedings of the XXXth URSI General Assembly and Scientific Symposium, S. 1–4. Institute of Electrical Electronics Engineers (IEEE) (2011). doi: 10.1109/URSIGASS.2011.6050336
  73. 73.
    International Technical Roadmap for Semiconductors (ITRS) 2012 Update: ITRS team (2012). http://www.itrs.net/ITRS%201999-2014%20Mtgs,%20Presentations%20&%20Links/2012ITRS/2012Chapters/2012Overview.pdf. Zugegriffen am 24.03.2015
  74. 74.
    International VLBI Service for Geodesy and Astrometry: About IVS (2015). http://ivscc.gsfc.nasa.gov/about/com/vtc/index.html. Zugegriffen am 08.04.2015
  75. 75.
    Jäggi, A., Weigelt, M., Flechtner, F., Güntner, A., Mayer-Gürr, T., Martinis, S., Bruinsma, S., Flury, J., Bourgogne, S.: European gravity service for improved emergency management – a new Horizon2020 project to serve the international community and improve the accessibility to gravity field products. Vortrag Grace Science Team Meeting 2014. http://www.gfz-potsdam.de/grace/gstm/gstm-2014. Zugegriffen am 13.04.2016
  76. 76.
    Japan Aerospace Exploration Agency (JAXA): The KAGUYA (SELENE) Mission (2015). http://www.kaguya.jaxa.jp/index_e.htm. Zugegriffen am 09.04.2015
  77. 77.
    Japan Space Systems: HISUI: hyper-spectral Imager SUIte (2013). http://www.jspacesystems.or.jp. Zugegriffen am 27.04.2015
  78. 78.
    Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F. (Hrsg.): Mastering the Information Age – Solving Problems with Visual Analytics. Eurographics Association, Goslar (2010). ISBN 978-3-905673-77-7Google Scholar
  79. 79.
    Kirchner, G.: Infrared laser ranging to space debris. In: 19th International Workshop on Laser Ranging, Annapolis (2014). http://cddis.gsfc.nasa.gov/lw19/docs/2014/Presentations/3009_Kirchner_presentation.pdf. Zugegriffen am 05.08.2015
  80. 80.
    Kristiansen, E., Loisy, C., v.d. Bosch, W.: Road traffic monitoring by satellite. ESA bull. 115(August) (2003). www.esa.int/esapub/bulletin/bullet115/chapter7_bul115.pdf. Zugegriffen am 06.08.15
  81. 81.
    Kurtenbach, E., Eicker, A., Mayer-Gürr, T., Holschneider, M., Hayn, M., Fuhrmann, M., Kusche, J.: Improved daily GRACE gravity field solutions using a Kalman smoother. J. Geod. 59–60, 39–48 (2012). doi: 10.1016/j.jog.2012.02.006 CrossRefGoogle Scholar
  82. 82.
    Kusche, J., Klemann, V., Bosch, W.: Mass distribution and mass transport in the Earth system. J. Geodyn. 59–60, 1–8 (2012). doi: 10.1016/j.jog.2012.03.003 CrossRefGoogle Scholar
  83. 83.
    Kusche, J., Klemann, V., Sneeuw, N.: Mass distribution and mass transport in the Earth system: recent scientific progress due to interdisciplinary research. Surv. Geophys. 35(6), 12431249 (2014). doi: 10.1007/s10712-014-9308-9 CrossRefGoogle Scholar
  84. 84.
    Lambeck, K.: Geophysical Geodesy, The Slow Deformation of the Earth. Clarendon Press, Oxford (1987)Google Scholar
  85. 85.
    Li, X., Ge, M., Zhang, Y., Wang, R., Guo, B., Klotz, J., Wickert, J., Schuh, H.: High-rate coseismic displacements from tightly integrated processing of raw GPS and accelerometer data. Geophys. J. Int. 195(1), 612–624 (2013). doi: 10.1093/gji/ggt249 2013
  86. 86.
    Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H.: Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 5, 8328 (2015). doi: 10.1038/srep08328 CrossRefGoogle Scholar
  87. 87.
    Liu, X.: Global Gravity Field Recovery from Satellite-to-Satellite Tracking Data with the Acceleration Approach. Publications on Geodesy, Bd. 68. Nederlandse Commissie voor Geodesie, Delft (2008)Google Scholar
  88. 88.
    Marris, E.: Drones in science: Fly, and bring me data. Nature 498(7453), 156158 (2013)Google Scholar
  89. 89.
    Matsuo, K., Chao, B.F., Otsubo, T., Heki, K.: Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991–2011. Geophys. Res. Lett. 40, 4662–4667 (2013). doi: 10.1002/grl.50900 CrossRefGoogle Scholar
  90. 90.
    Mayer-Gürr, T., Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE, Dissertation, Universität Bonn, Bonn, ISSN 1864-1113 (2008)Google Scholar
  91. 91.
    McGuirk, J.M., Foster, G.T., Fixler, J.B., Snadden, M.J., Kasevich, M.A.: Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 65(3), 033608 (2002)CrossRefGoogle Scholar
  92. 92.
    Meehl, G.A., Goddard, L., Murphy, J., Stouffer, R.J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M.A.: Decadal prediction. Bull. Am. Met. Soc. 90(10), 14671485 (2009). doi: 10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  93. 93.
    Mendes Cveira, P.J., Böhm, J., Schuh, H., Klügel, T., Velikoseltsev, A., Ulrich Schreiber, K., Brzezinski, A.: Earth rotation observed by very long baseline interferometry and ring laser. Pure Appl. Geophys. 166, 1499–1517 (2009). doi: 10.1007/s00024-004-0487-z CrossRefGoogle Scholar
  94. 94.
    Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Dos Santos, F.P., Gitlein, O., Timmen, L.: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L111 (2010)CrossRefGoogle Scholar
  95. 95.
    Michels, R., Liebsch, S., Graser, R.: Snapshot-hyperspektroskopie. Photonik 46(1), 3638 (2014)Google Scholar
  96. 96.
    Milne, G.A., Davis, J.L., Mitrovica, J.X., Scherneck, H.-G., Johansson, J.M., Vermeer, M., Koivula H.: Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291(5512), 2381–2385 (2001). doi: 10.1126/science.1057022 CrossRefGoogle Scholar
  97. 97.
    Molotov, I., Tuccari, G., Nechaeva, M., Dugin, N., Konovalenko, A., Falkovich, I., Gorshenkov, Y., Liu, X., Volvach, A., Agapov, V., Pushkarev, A., Titenko, V., Buttacio, S., Rumyantsev, V., Shmeld, I.: First results of European VLBI radar observations of space objects. In: Bachiller, R., Colomer, F., Desmurs, J.-F., de Vicente, P. (Hrsg.) Proceedings of the 7th European VLBI Network Symposium on VLBI Scientific Research & Technology, 329–330, Toledo: Observatorio Astronomico Nacional (2004). http://www.oan.es/evn2004/WebPage/proceedings.html. Zugegriffen am 09.04.2015
  98. 98.
    Moritz, H., Hofmann-Wellenhof, B.: Geometry, Relativity, Geodesy. Herbert Wichmann Verlag, Karlsruhe, ISBN-13: 978-3879072446 (1993)Google Scholar
  99. 99.
    Müller, J., Williams, J.G., Turyshev, S.G.: Lunar laser ranging contributions to relativity and geodesy. Lasers, clocks and drag-free control. Astrophys. Space Sci. Library 349, 457–472 (2008)Google Scholar
  100. 100.
    National Aeronautics and Space Administration: GRACE II: Gravity recovery and climate experiment (2009). http://decadal.gsfc.nasa.gov/grace2.html.Google Scholar
  101. 101.
    National Aeronautics and Space Administration: Landsat 8 (2013). www.nasa.gov/landsat. Zugegriffen am 24.03.2015
  102. 102.
    National Aeronautics and Space Administration: ICESat-2 (2015). http://icesat.gsfc.nasa.gov/icesat2. Zugegriffen am 24.03.2015
  103. 103.
    Nechaeva, M., Antipenko, A., Bezrukov, D., Bezrukovs, V., Dementjev, A., Dugin, N., Jekabsons, N., Khutornoy, R., Klapers, M., Konovalenko, A., Kulishenko, V., Nabatov, A., Nesteruk, V., Pupillo, G., Reznichenko, A., Salerno, E., Shmeld, I., Skirmante, K., Tikhomirov, Y., Voytyuk, V.: First results of the VLBI experiment on radar location of the asteroid 2012 DA14. Balt. Astron. 22, 341–346 (2013)Google Scholar
  104. 104.
    Neelmeijer, J., Motagh, M., Wetzel, H.-U.: Estimating spatial and temporal variability in surface kinematics of the Inylchek Glacier, Central Asia, using TerraSAR–X data. Remote Sens. 6(10), 9239–9259 (2014)CrossRefGoogle Scholar
  105. 105.
    Neidhardt, A., Kronschnabl, G., Schatz, R., Schüler, T.: Geodetic observatory Wettzell – 20-m radio telescope and twin telescopes. In: Baver, K.D., Behrend, D., Armstrong, K.L. (Hrsg.) International VLBI Service for Geodesy and Astrometry 2013 Annual Report. NASA/TP-2014-217522, S. 187–190 (2014)Google Scholar
  106. 106.
    Neumann, G.A., Barker, M.H., Mao, D., Mazarico, E., McGarry, J.F., Skillman, D.R., Sun, X., Torrence, M.H., Smith, D.E., Zuber, M.T.: Interplanetary spacecraft laser ranging: the quest for 1 AU. In: 19th International Workshop on Laser Ranging, Annapolis. http://cddis.gsfc.nasa.gov/lw19/docs/2014/Presentations/3143_Neuman_presention.pdf. Zugegriffen am 05.08.2015
  107. 107.
    Neumeyer, J.: Superconducting gravimetry. In: Xu, G. (Hrsg.) Sciences of Geodesy I – Advances and Future Directions, Reference and Handbook, S. 339–413. Springer, Berlin/Heidelberg (2010)Google Scholar
  108. 108.
    Niebauer, T.M.: Gravimetric methods – Absolute gravimeter: Instruments concepts and implementation. In: Herring, T.A. (Hrsg.) Treatise on Geophysics. Physical Geodesy, Bd. 3, S. 43–64. Elsevier, Oxford (2009)Google Scholar
  109. 109.
    Niell, A., Whitney, A., Petrachenko, B., Schlüter, W., Vandenberg, N., Hase, H., Koyama, Y., Ma, C., Schuh, H., Tuccari, G.: VLBI2010: Current and future requirements for geodetic VLBI systems. Report of Working Group 3 to the IVS Directing Board (2005) Greenbelt: NASA Goddard Space Flight Center. http://ivscc.gsfc.nasa.gov/about/wg/wg3/IVS_WG3_report_050916.pdf. Zugegriffen am 08.04.2015
  110. 110.
    Nilsson, T., Böhm, J., Schuh, H., Schreiber, U., Gebauer, A., Klügel, T.: Combining VLBI and ring laser observations for determination of high frequency Earth rotation variation. J. Geodyn. 62, 69–73 (2012). doi: 10.1016/j.jog.2012.02.002 CrossRefGoogle Scholar
  111. 111.
    Nilsson, T., Soja, B., Karbon, M., Heinkelmann, R., Schuh, H.: Application of Kalman filtering in VLBI data analysis. Earth, Planets, and Space 67:136 (2015). doi: 10.1186/s40623-015-0307-y2015 CrossRefGoogle Scholar
  112. 112.
    Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., Schöne, T.: Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data. J. Clim. 29, 2443–2456 (2016). doi: 10.1175/JCLI-D-15-0158.1 CrossRefGoogle Scholar
  113. 113.
    Nothnagel, A., Angermann, D., Börger, K., Dietrich, R., Drewes, H., Görres, B., Hugentobler, U., Ihde, J., Müller, J., Oberst, J., Pätzold, M., Richter, B., Rothacher, M., Schreiber, U., Schuh, H., Soffel, M.: Space-time reference systems for monitoring global change and for precise navigation, Bd. 44 (2010). Mitteilungen des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.M.Google Scholar
  114. 114.
    Parallella Community: Parallela – Superconducting for everyone (2015). https://www.parallella.org. Zugegriffen am 24.03.2015
  115. 115.
    Peters, A., Chung, K.Y., Chu, S.: High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001). doi: 10.1088/0026-1394/38/1/4 CrossRefGoogle Scholar
  116. 116.
    Petit, G., Luzum, B. (Hrsg.): IERS Conventions (2010). IERS Technical Note 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main (2010)Google Scholar
  117. 117.
    Petrachenko, B., Niell, A., Behrend, D., Corey, B., Böhm, J., Charlot, P., Collioud, A., Gipson, J., Haas, R., Hobiger, T., Koyama, Y., MacMillan, D., Malkin, Z., Nilsson, T., Pany, A., Tuccari, G., Whitney, A., Wresnik, J.: Design aspects of the VLBI2010 system. Progress report of the IVS VLBI2010 committee. National Aeronautics and Space Administration. Goddard Space Flight Center. Greenbelt, Maryland (2009). NASA/TM-2009-214180 ftp://ivscc.gsfc.nasa.gov/pub/misc/V2C/PR-V2C_090417.pdf. Zugegriffen am 13.04.2016
  118. 118.
    Poli, N., Oates, C.W., Gill, P., Tino, G.M.: Optical atomic clocks. La rivista del Nuovo Cimento 36(12), 555–624 (2013). doi: 10.1393/ncr/i2013-10095-x Google Scholar
  119. 119.
    Powell, D.: Lasers boost space communications. Nature 499, 266–267 (2013). doi: 10.1038/499266a CrossRefGoogle Scholar
  120. 120.
    Ray, J., Altamimi, Z.: Evaluation of co-location ties relating the VLBI and GPS reference frames. J. Geodesy 79(4–5), 189–195 (2005). doi: 10.1007/s00190-005-0456-z CrossRefGoogle Scholar
  121. 121.
    Reigber, C., Schmidt, R., Flechtner, F., König, R., Meyer, U., Neumayer, K.-H., Schwintzer, P., Yuan Zhu, S.: An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 39, 1–10 (2005)CrossRefGoogle Scholar
  122. 122.
    Rieck, C., Haas, R., Jarlemark, P., Jaldehag, K.: VLBI frequency transfer using CON T11. In: Proceedings on European Frequency and Time Forum, 2012, 163–165. IEEE (2012). doi: 10.1109/EFTF.2012.6502358
  123. 123.
    Rothacher, M., Beutler, G., Behrend, D., Donnellan, A., Hinderer, J., Ma, C., Noll, C., Oberst, J., Pearlman, M., Plag, H.-P., Richter, B., Schöne, T., Tavernier, G., Woodworth, P.L.: The future global geodetic observing system. In: Plag, H.-P., Pearlmann, M. (Hrsg.) Global Geodetic Observing System – Meeting the Requirements of a Global Society on a Changing Planet in 2020, S. 237–272. Springer (2009). doi: 10.1007/978-3-642-02687-4
  124. 124.
    Rowlands, D.D., Luthcke, S.B., McCarthy, J.J., Klosko, S.M., Chinn, D.S., Lemoine, F.G., Boy, J.-P., Sabaka, T.: Global mass flux solutions from GRACE: a comparison of parameter estimation strategies–mass concentrations versus stokes coefficients. J. Geophys. Res. 115(B01403) (2010). doi: 10.1029/2009JB006546
  125. 125.
    Ruf, C.S., Gleason, S., Jelenak, Z., Katzberg, S., Ridley, A., Rose, R., Scherrer, J., Zavorotny, V.: The CYGNSS nanosatellite constellation hurricane mission. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), S. 214–216 (2012). doi: 10.1109/IGARSS.2012.6351600
  126. 126.
    Rummel, R.: Height unification using GOCE. J. Geodetic Sci. 2(4), 355–362 (2013). doi: 10.2478/v10156-011-0047-2 Google Scholar
  127. 127.
    Rummel, R., Rothacher, M., Beutler, G.: Integrated global geodetic observing system (IGGOS) – Science rationale. J. Geodyn. 40(4–5), 357362 (2005). doi: 10.1016/j.jog.2005.06.003 Google Scholar
  128. 128.
    Sapienza University of Rome: LARES – the laser relativity satellite (2012). http://www.lares-mission.com. Zugegriffen am 24.03.2015
  129. 129.
    Sasgen, I., Dobslaw, H., Martinec, Z., Thomas, M.: Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet. Sci. Lett. 299, 352–358 (2010). doi: 10.1016/j.epsl.2010.09.015 CrossRefGoogle Scholar
  130. 130.
    Sasgen, I., van den Broeke, M., Bamber, J.L., Rignot, E., Sørensen, L.S., Wouters, B., Martinec, Z., Velicogna, I., Simonsen, S.B.: Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett. 333–334, 293–303 (2012). doi: 10.1016/j.epsl.2012.03.033 CrossRefGoogle Scholar
  131. 131.
    Sato, Y., Packard, R.E.: Superfluid helium quantum interference devices: physics and applications. Rep. Prog. Phys. 75(1), 016401 (2012). doi: 10.1088/0034-4885/75/1/016401 CrossRefGoogle Scholar
  132. 132.
    Saynisch, J., Bergmann, I., Thomas, M.: Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model. J. Geodesy 89(2), 121–139 (2015)CrossRefGoogle Scholar
  133. 133.
    Scanlon, B.R., Longuevergne, L., Long, D.: Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. 48, 4520 (2012). doi: 10.1029/2011WR011312 Google Scholar
  134. 134.
    Scherr, A., Volwerk, M., Baumjohann, W.: Annual Report IWF/ÖAW 2013. Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, Graz (2013)Google Scholar
  135. 135.
    Schmidt, M., Göttl, F., Heinkelmann, R.: Towards the combination of data sets from various observation techniques. In: Kutterer, H., Seitz, F., Alkhatib, H., Schmidt, M. (Hrsg.) The 1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems (QuGOMS’11). IAG Symposia, Bd. 140, S. 35–43. Springer (2015). doi: 10.1007/978-3-319-10828-5_6
  136. 136.
    Schmidt, T.J.W., Faber, A.: (Haser).: Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv. Space Res. 46(2), 150–161 (2010). doi: 10.1016/j.asr.2010.01.0212010
  137. 137.
    Schöne, T., Schön, N., Thaller, D.: IGS Tide Gauge benchmark monitoring pilot project (TIGA) – Scientific benefits. J. Geodesy 83(3–4), 249–261 (2009). doi: 10.1007/s00190-008-0269-y CrossRefGoogle Scholar
  138. 138.
    Schöne, T., Pandoe, W., Mudita, I., Roemer, S., Illigner, J., Zech, C., Galas, R.: GPS water level measurements for Indonesia’s Tsunami early warning system. Nat. Hazards Earth Syst. Sci. 11, 741–749 (2011). doi: 10.5194/nhess-11-741-2011 CrossRefGoogle Scholar
  139. 139.
    Schöne, T., Zech, C., Unger-Shayesteh, K., Rudenko, V., Thoss, H., Wetzel, H.-U., Gafurov, A., Illigner, J., Zubovich, A.: A new permanent multi-parameter monitoring network in Central Asian high mountains – From measurements to data bases. Geosci. Instrum. Method. Data Syst. 2, 97–111 (2013). doi: 10.5194/gi-2-97-2013 CrossRefGoogle Scholar
  140. 140.
    Schreiber, U., Thirkettle, R.J., Hurst, R.B., Follman, D., Cole, G.D., Aspelmeyer, M., Wells, J.-P.R.: Sensing Earth’s rotation with a helium-neon ring laser operating at 1,15μm. Opt. Lett. 40(8), 1705 (2015). doi: 10.1364/OL.40.001705 CrossRefGoogle Scholar
  141. 141.
    Schuh, H., König, R., Ampatzidis, D., Glaser, S., Flechtner, F., Heinkelmann, R., Nilsson, T.J.: GGOS-SIM – simulation of the reference frame for the global geodetic observing system. In: International Association of Geodesy Symposia, Symposium 2014 on Reference Frames for Applications in Geosciences, Luxembourg. Springer (2015). ISSN: 0939-9585 (submitted)Google Scholar
  142. 142.
    Seitz, M., Angermann, D., Bloßfeld, M., Drewes, H., Gerstl, M.: The 2008 DGFI realization of the ITRS: DTRF2008. J. Geod. 86, 1097–1123 (2012). doi: 10.1007/s00190-012-0567-2 CrossRefGoogle Scholar
  143. 143.
    Semmling, M., Beckheinrich, J., Wickert, J., Beyerle, G., Schön, S., Fabra, F., Pflug, H., He, K., Schwabe, J., Scheinert, M.: Sea surface topography retrieved from GNSS-R phase data of the GEOHALO flight mission. Geophys. Res. Lett. 41(3), 954–960 (2014). doi: 10.1002/2013GL058725 CrossRefGoogle Scholar
  144. 144.
    Semmling, M., Schmidt, T., Wickert, J., Schön, S., Fabra, F., Cardellach, E., Rius, A.: A Zeppelin experiment to study airborne altimetry using specular Global navigation satellite system reflections. Radio Sci. 48, 427–440 (2013)CrossRefGoogle Scholar
  145. 145.
    Shako, R., Förste, C., Abrykosov, O., Bruinsma, S., Marty, J.-C., Lemoine, J.-M., Flechtner, F., Neumayer, K.-H., Dahle, C.: EIGEN-6C: A high-resolution global gravity combination model including GOCE data. In: Flechtner, F., Sneeuw, N., Schuh, W.-D. (Hrsg.) Observation of the System Earth from Space – CHAMP, GRACE, GOCE and Future Missions. Advanced Technologies in Earth Sciences, S. 155–161. Springer, Berlin/Heidelberg (2014). doi: 10.1007/978-3-642-32135-1_20 CrossRefGoogle Scholar
  146. 146.
    Sistema de Referencia Geocéntrico para las Américas (SIRGAS): Geocentric Reference System for the Americas (2014). http://www.sirgas.org. Zugegriffen am 09.04.2015
  147. 147.
    Shen, P.-Y., Mansinha, L.: Oscillation, nutation and wobble of an elliptical rotating Earth with liquid outer core. Geophys. J. Int. 46(2), 467496 (1976). doi: 10.1111/j.1365-246x.1976.tb04167.x Google Scholar
  148. 148.
    Silvestrin, P., Aguirre, M., Massotti, L., Leone, B., Cesare, S., Kern, M., Haagmans, R.: The future of the satellite gravimetry after the GOCE mission. In: Kenyon, S., Pacino, M.C., Marti, U. (Hrsg.) Geodesy for Planet Earth. International Association of Geodesy Symposia, Bd. 136, S. 801–808. Springer, New York/Berlin/Heidelberg (2012)Google Scholar
  149. 149.
    Simmonds, R.W., Marchenkov, A., Hoskinson, E., Davis, J.C.S., Packard, R.E.: Quantum interference of superfluid 3He. Nature 412, 55–58 (2001). doi: 10.1038/35083518 CrossRefGoogle Scholar
  150. 150.
    Soja, B., Heinkelmann, R., Schuh, H.: Probing the solar corona with very long baseline interferometry. Nat. Commun. 5, 4166 (2014). doi: 10.1038/ncomms5166 CrossRefGoogle Scholar
  151. 151.
    Soja, B., Karbon, M., Nilsson, T., Glaser, S., Balidakis, K., Heinkelmann, R., Schuh, H.: VLBI TRF determination via Kalman filtering. Geophysical Research Abstracts, Bd. 17. EGU2015-970 (2015)Google Scholar
  152. 152.
    Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G., Montenbruck, O.: Galileo orbit and clock quality of the IGS multi-GNSS experiment. Adv. Space Res. 55(1), 269–281 (2015). doi: 10.1016/j.asr.2014.06.030. ISSN:0273–1177CrossRefGoogle Scholar
  153. 153.
    Tang, G., Cao, J., Han, S., Hu, S., Ren, T., Chen, L., Sun, J., Wang, M., Li, Y., Li, L.: Research on lunar radio measurements by Chang’E-3. In: Behrend, D., Baver, K.D., Armstrong, K.L. (Hrsg.) IVS 2014 General Meeting Proceedings, “VGOS: The New VLBI Network”, pp. 473–477. Science Press, Beijing (2014); Tapley, B., Bettadpur, S., Ries, J.C., Thompson, P.F., Watkins, M.M.: GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004). doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  154. 154.
    Tapley, B., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004). doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  155. 155.
    Tolker-Nielsen, T., Oppenhauser, G.: In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. Proc. SPIE 4635 (2002); Free-Space Laser Communication Technologies XIV, 1 (April 30, 2002). doi: 10.1117/12.464105
  156. 156.
    University Corporation for Atmospheric Research (UCAR): FORMOSAT-7/COSMIC-2 (COSMIC-2) science mission (2014). www.cosmic.ucar.edu/cosmic2. Zugegriffen am 24.03.2015
  157. 157.
    University of Michigan: Cyclone global navigation satellite system (CYGNSS) (2015). http://aoss-research.engin.umich.edu/missions/cygnss. Zugegriffen am 24.03.2015
  158. 158.
    van der Wal, W., Barnhoorn, A., Stocchi, P., Gradmann, S., Wu, P., Drury, M., Vermeersen, B.: Glacial isostatic adjustment model with composite 3-D Earth rheology for Fennoscandia. Geophys. J. Int. 194(1), 6177 (2013). doi: 10.1093/gji/ggt099 Google Scholar
  159. 159.
    van der Wal, W., Whitehouse, P.L., Schrama, E.J.O.: Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica. Earth Planet. Sci. Lett. 414, 134–143 (2014). doi: 10.1016/j.epsl.2015.01.001 Google Scholar
  160. 160.
    Visser, P.N.A.M., Sneeuw, N., Reubelt, T., Losch, M., van Dam, T.: Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys. J. Int. 181(2), 789–805 (2010). doi: 10.1111/j.1365-246x.2010.04557.x Google Scholar
  161. 161.
    Wang, L., Shum, C.K., Simons, F.J., Tapley, B., Dai, C.: Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys. Res. Lett. 39, 7301 (2012). doi: 10.1029/2012GL051104 Google Scholar
  162. 162.
    Werninghaus, R.: The German SAR Roadmap. 4. TerraSAR-X Science Team Meeting. Oberpfaffenhofen (2011). 14.-16. 02.2011. http://terrasar-x.dlr.de/papers_sci_meet_4/general/werninghaus_The_german_national_SAR_programme.pdf.
  163. 163.
    Wickert, J., Schmidt, T.: Fernerkundung der mittleren Atmosphäre mit GPS-Radiookkultation. promet – Meteorologische Fortbildung 31(1), 50–52 (2005)Google Scholar
  164. 164.
    Wickert, J., Gendt, G.: Fernerkundung der Erdatmosphäre mit GPS. promet – Meteorologische Fortbildung 32(3), 80–88 (2006)Google Scholar
  165. 165.
    Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C.-Z., Healy, S.B., Heise, S., Huang, C.-Y., Jakowski, N., Köhler, W., Mayer, C., Offiler, D., Ozawa, E., Pavelyev, A.G., Rothacher, M., Tapley, B., Arras, C.: GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr. Atmos. Ocean. Sci. 20(1), 35–50 (2009)CrossRefGoogle Scholar
  166. 166.
    Wickert, J., Rothacher, M., Brieß, K., Wahnschaffe, G., Pilz, N.: NanoGEM: Phase A, Final Report, 144 Seiten (2011)Google Scholar
  167. 167.
    Wickert, J., Beyerle, G., Cardellach, E., Förste, C., Gruber, T., Helm, A., Hess, M.-P., Høeg, P., Jakowski, N., Montenbruck, O., Rius, A., Rothacher, M., Shum, C.K.: GNSS REflectometry, radio occultation and scatterometry onboard ISS for long-term monitoring of climate observations using innovative space geodetic techniques on-board the international space station. Proposal in response to ESA research announcement for ISS experiments relevant to study of global climate change (2011)Google Scholar
  168. 168.
    Wickert, J., Semmling, M., Beckheinrich, J., Beyerle, G., Vey, S., Schuh, H.: Innovative Satellitengeodäsie am GFZ: Fernerkundung mit reflektierten GNSS-Signalen. AvN 121, 347–353 (2014)Google Scholar
  169. 169.
    Williams, J.G., Turyshev, S.G., Boggs, D.H.: Lunar laser ranging tests of the equivalence principle. Class. Quantum Grav. 29, 184004 (2012). doi: 10.1088/0264-9381/29/18/184004 CrossRefGoogle Scholar
  170. 170.
    Wu, X., Wahr, J.M.: Effects of non-hydrostatic core-mantle boundary topography and core dynamics on Earth rotation. Geophys. J. Int. 128(1), 18–42 (1997). doi: 10.1111/j.1365-246x.1997.tb04069.x CrossRefGoogle Scholar
  171. 171.
    Wulder, M.A., Coops, N.C.: Satellites: make Earth observations open access. Nature 513, 3031 (2014)CrossRefGoogle Scholar
  172. 172.
    Zech, C., Schöne, T., Neelmeijer, J., Zubovich, A., Galas, R.: Geodetic monitoring networks: GNSS-derived glacier surface velocities at the global change observatory Inylchek (Kyrgyzstan). In: Rizos, C., Willis, P. (Hrsg.), IAG 150 Years, Proceedings of the IAG Scientific Assembly in Postdam, Germany, 2013, International Association of Geodesy Symposia. Springer, Berlin/Heidelberg (2015). doi: 10.1007/1345_2015_38 Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Harald Schuh
    • 1
    Email author
  • Jens Wickert
    • 1
  • Mike Sips
    • 1
  • Tilo Schöne
    • 1
  • Christian Rogaß
    • 1
  • Sigrid Roessner
    • 1
  • Rolf König
    • 1
  • Volker Klemann
    • 1
  • Robert Heinkelmann
    • 1
  • Henryk Dobslaw
    • 1
  • Georg Beyerle
    • 1
  1. 1.Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZStiftung des öffentlichen Rechts des Landes BrandenburgPotsdamDeutschland

Personalised recommendations