Brouwer, L.E.J.: Essentieel negatieve eigenschappen. Indag. Math. 10, 322–323 (1948)
Google Scholar
Chagrov, A.V., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides. Clarendon Press, Oxford (1997)
MATH
Google Scholar
de Jongh, D., Yang, F.: Jankov’s theorems for intermediate logics in the setting of universal models. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) TbiLLC 2009. LNCS, vol. 6618, pp. 53–76. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Diego, A.: Sur les Algèbres de Hilbert, vol. 21. E. Nauwelaerts, Gauthier-Villars, Louvain (1966)
MATH
Google Scholar
Enderton, H.B.: A Mathematical Introduction to Logic. Harcourt/Academic Press, Burlington (2001)
MATH
Google Scholar
Gabbay, D.M., de Jongh, D.H.J.: A sequence of decidable finitely axiomatizable: intermediate logics with the disjunction property. J. Symbolic Logic 39(1), 67–78 (1974)
CrossRef
MATH
MathSciNet
Google Scholar
Gabbay, D.M., Shehtman, V., Skvortsov, D.: Quantification in Nonclassical Logic I. Studies in Logic and the Foundations of Mathematics. Clarendon Press, Oxford (2009)
MATH
Google Scholar
Ghilardi, S., Zawadowski, M.W.: Undefinability of propositional quantifiers in the modal system S4. Stud. Logica. 55(2), 259–271 (1995)
CrossRef
MATH
MathSciNet
Google Scholar
Griss, G.F.C.: Negationless intuitionistic mathematics I. Indag. Math. 8, 675–681 (1946)
Google Scholar
Heyting, A.: Die formalen Regeln der intuitionistischen Logik, pp. 42–56 (1930)
Google Scholar
Jankov, V.A.: Calculus of the weak law of the excluded middle (in russian). Izv. Akad. Nauk SSSR Ser. Mat. 32(5), 1044–1051 (1968)
MATH
MathSciNet
Google Scholar
Johansson, I.: Der Minimalkalkül Ein Reduzierter Intuitionistischer Formalismus. Compos. Math. 4, 119–136 (1937)
Google Scholar
Kolmogorov, A.: Zur Deutung der intuitionistischen Logik. Math. Z. 35(1), 58–65 (1932)
CrossRef
MATH
MathSciNet
Google Scholar
Pitts, A.M.: On an interpretation of second order quantification in first order intuitionistic propositional logic. J. Symb. Logic 57, 33–52 (1992)
CrossRef
MATH
MathSciNet
Google Scholar
Renardel de Lavalette, G.R., Hendriks, A., de Jongh, D.: Intuitionistic implication without disjunction. J. Log. Comput. 22(3), 375–404 (2012)
CrossRef
MATH
Google Scholar
Troelstra, A., van Dalen, D.: Constructivism in Mathematics, vols. 2. North-Holland, Amsterdam (1988)
Google Scholar
Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2000)
CrossRef
MATH
Google Scholar
Tzimoulis, A., Zhao, Z.: The Universal Model for the Negation-free Fragment of IPC. Technical Notes (X) Series X-2013-01, ILLC, University of Amsterdam (2013)
Google Scholar
van Dalen, D.: Logic and Structure. Universitext. Springer, London (2012)
Google Scholar
Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.) Proceedings of Gödel 1996: Logical Foundations of Mathematics, Computer Science and Physics - Kurt Gödel’s Legacy, Brno, Czech Republic. Lecture Notes Logic, vol. 6, pp. 139–164. Springer Verlag, Berlin (1996)
Google Scholar
Zhao, Z.: An Investigation of Jankov’s Logic (2012) (Unpublished paper)
Google Scholar