Skip to main content
Book cover

Robot Fish pp 219–253Cite as

IPMC-Actuated Robotic Fish

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Excellent swimmers, such as tuna, rays, and goldfish, take advantage of their flexible fins, compliant bodies, and swimming bladders to achieve fast, highly maneuverable, and energy-efficient locomotion. Ionic polymer-metal composites (IPMCs) present attractive opportunities for implementation in flexible underwater propulsion systems due to their intrinsic compliancy and underwater actuation capability. IPMCs can also perform as lightweight and compact catalysts for water electrolysis, which can be used to generate gas for buoyancy control. In this chapter, the potential of IPMCs in underwater propulsion is explored, including caudal fin propulsion, pectoral fin propulsion, and buoyancy control. Enabling technologies, including fabrication methods, modeling and control strategies, and design approaches, are developed for creating bio-inspired robots using IPMC as artificial muscle and buoyancy engine. Three types of underwater robots have been developed to evaluate their performance. First, a robotic fish propelled by an IPMC caudal fin is developed to evaluate its caudal fin propulsion. Second, a bio-inspired robotic cownose ray propelled by two IPMC actuated pectoral fins is demonstrated to evaluate its pectoral fin propulsion. Third, a buoyancy control device enabled by IPMC-enhanced electrolysis is developed to explore its buoyancy control performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdelnour K, Mancia E, Peterson SD, Porfiri M (2009) Hydrodynamics of underwater propulsors based on ionic polymer-metal composites: a numerical study. Smart Mater Struct 18(8):085006 (11 pp)

    Google Scholar 

  2. Akle B, Habchi W, Abdelnour R, Blottman JI, Leo DJ (2012) Biologically inspired highly efficient buoyancy engine. In: Lakhtakia A (ed) Proceedings of the SPIE conference on bioinspiration, biomimetics, and bioreplication, vol 8339, 833900 (7 pp)

    Google Scholar 

  3. Akanyeti O, Ernits A, Fiazza C, Toming G, Kulikovskis G, Listak M, Raag R, Salumäe T, Fiorini P, Kruusmaa M (2010) Myometry-driven compliant-body design for underwater propulsion. In: Proceedings of the IEEE international conference on robotics and automation, pp 84–89

    Google Scholar 

  4. Alvarado PV, Youcef-Toumi K (2006) Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J Dyn Syst Meas Contr 128(1):3–13

    Article  Google Scholar 

  5. Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mechatron 15(4):603–614

    Article  Google Scholar 

  6. Bar-Cohen Y (2000) Electroactive polymers as artificial muscles: capabilities, potentials and challenges. In: Robotics, pp 188–196

    Google Scholar 

  7. Bennett M, Leo D (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A 115(1):79–90

    Article  Google Scholar 

  8. Bond CE (1996) Swim bladder. Saunders College Publishing, Orlando

    Google Scholar 

  9. Boyer F, Porez M, Khalil W (2006) Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans Robot 22(4):763–775

    Article  Google Scholar 

  10. Brunetto P, Fortuna L, Graziani S, Strazzeri S (2008) A model of ionic polymer–metal composite actuators in underwater operations. Smart Mater Struct 17(2):025029 (12 pp)

    Google Scholar 

  11. Carpi F, Rossi DD, Kornbluh R, Pelrine R, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, New York

    Google Scholar 

  12. Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529

    Article  MathSciNet  Google Scholar 

  13. Chen Z, Sharata S, Tan X (2010) Modeling of biomimetic robotic fish propelled by an ionic polymer metal composite caudal fin. IEEE/ASME Trans Mechatron 15(3):448–459

    Article  Google Scholar 

  14. Chen Z, Tan X (2010) Monolithic fabrication of ionic polymer-metal compo-site actuators capable of complex deformation. Sens Actuators A Phys 157(2):246–257

    Article  MathSciNet  Google Scholar 

  15. Chen Z, Um T, Zhu J, Bart-Smith H (2011) Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin. In: Proceedings of the ASME international mechanical engineering congress and exposition, pp 64174:1–8

    Google Scholar 

  16. Chung C, Fung P, Hong Y, Ju M, Lin C, Wu T (2006) A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens Actuators B Chem 117(2):367–375

    Article  Google Scholar 

  17. Clough RW, Penzien J (1993) Dynamics of structures. McGraw-Hill, NewYork

    Google Scholar 

  18. Daou HE, Salumäe T, Toming G, Kruusmaa M (2012) A bio-inspired compliant robotic fish: design and experiments. In: Proceedings of the IEEE international conference on robotics and automation, pp 5340–5345

    Google Scholar 

  19. Gao J, Bi S, Xu Y, Liu C (2007) Development and design of a robotic manta ray featuring flexible pectoral fins. In: Proceedings of the IEEE international conference on robotic and biomimetics, pp 519–523

    Google Scholar 

  20. Guo S, Fukuda T, Asaka K (2003) A new type of fish-like underwater micro-robot. IEEE/ASME Trans Mechatron 8(1):136–141

    Google Scholar 

  21. Guo J, Yen WK (2008) Power reduction by controlling joint compliance for the propulsion of a biomimetic underwater vehicle. In: Proceedings of the 17th world congress the international federation of automatic control, vol 17, pp 15618–15623

    Google Scholar 

  22. Hu H, Liu J, Dukes I, Francis G (2006) Design of 3D swim patterns for autonomous robotic fish. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 2406–2411

    Google Scholar 

  23. Kim B, Kim DH, Jung J, Park O (2005) A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater Struct 14(6):1579–1585

    Article  Google Scholar 

  24. Kim KJ, Shahinpoor M (2002) A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators, and artificial muscles. Polymer 43(3):797–802

    Article  Google Scholar 

  25. Kim SJ, Lee IT, Kim YH (2007) Performance enhancement of IPMC actuator by plasma surface treatment. Smart Mater Struct 16(1):N6–N11

    Article  Google Scholar 

  26. Lauder GV, Anderson EJ, Tangorra J, Madden PGA (2007) Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J Exp Biol 210(16):2767–2780

    Article  Google Scholar 

  27. Lauder GV, Madden PGA, Tangorra JL, Anderson E, Baker TV (2011) Bioinspiration from fish for smart material design and function. Smart Mater Struct 20(9):094014

    Google Scholar 

  28. Lee SJ, Han MJ, JunKim S, Jho J, Lee HY, Kim YH (2006) A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater Struct 15(5):1217–1224

    Article  Google Scholar 

  29. Lighthill MJ (1960) Note on the swimming of slender fish. J Fluid Mech 9(2):305–317

    Article  MathSciNet  Google Scholar 

  30. Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44(2):265–301

    Article  MATH  Google Scholar 

  31. Lu P, Lee K (2003) An alternative derivation of dynamic admittance matrix of piezoelectric cantilever bimorph. J Sound Vib 266(4):723–735

    Article  MathSciNet  Google Scholar 

  32. McFarland D, Gihespy I, Honary E (2003) Divebot: A diving robot with a whale-like buoyancy mechanism. Robotica 21(4):385–398

    Article  Google Scholar 

  33. Millet P, Pineri M, Durand R (1989) New solid polymer electrolyte composites for water electrolysis. J Appl Electrochem 19(2):162–166

    Article  Google Scholar 

  34. Moored K, Smith W, Hester J, Chang W, Bart-Smith H (2008) Investigating the thrust production of a myliobatoid-inspired oscillating wing. Adv Sci Technol 58:25–30

    Article  Google Scholar 

  35. Moored K, Bart-Smith H (2009) Investigation of clustered actuation in tensegrity structures. Int J Solids Struct 46(17):3272–3281

    Article  MATH  Google Scholar 

  36. Morgansen KA, Triplett BI, Klein DJ (2007) Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans Robot 23(6):1184–1199

    Article  Google Scholar 

  37. Najem J, Sarles SA, Akle B, Leo DJ (2012) Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater Struct 21(9):094026 (11 pp)

    Google Scholar 

  38. Palmre V, Hubbard JJ, Fleming M, Pugal D, Kim S, Kim KJ, Leang KK (2013) An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct 22(1):014003 (11 pp)

    Google Scholar 

  39. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomer with strain greater than 100 %. Science 287(5454):836–839

    Article  Google Scholar 

  40. Peterson SD, Porfiri M, Rovardi A (2009) A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments. IEEE/ASME Trans Mechatron 14(4):474–483

    Article  Google Scholar 

  41. Punning A, Anton M, Kruusmaa M, Aabloo A (2004) A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. In: Proceedings of the 2004 IEEE international conference on mechatronics and robotics, vol 2004, pp 241–245

    Google Scholar 

  42. Rosenberger LJ (2001) Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J Exp Biol 204(2):379–394

    Google Scholar 

  43. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76

    Article  Google Scholar 

  44. Salumäe T (2010) Design of a compliant underwater propulsion mechanism by investigating and mimicing the body of a rainbow trout. MS Thesis, Tallinn University of Technology

    Google Scholar 

  45. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct 7(6):R15

    Article  Google Scholar 

  46. Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819–833

    Article  Google Scholar 

  47. Shibuya K, Kado Y, Honda S, Iwamoto T, Tsutsumi K (2006) Underwater robot with a buoyancy control system based on the spermaceti oil hypothesis. In: Proceedings of the international conference on intelligent robots and systems, pp 3012–3017

    Google Scholar 

  48. Suo Z (2010) Theory of dielectric elastomers. Acta Mech Solida Sin 23(6):549–578

    Article  Google Scholar 

  49. Tan X, Kim D, Usher N, Laboy D, Jackson J, Kapetanovic A, Rapai J, Sabadus B, Zhou X (2006) An autonomous robotic fish for mobile sensing. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 5424–5429

    Google Scholar 

  50. Trease BP, Lu KJ, Kota S (2003) Biomimetic compliant system for smart actuator-driven aquatic propulsion: preliminary results. In: Proceedings of the ASME international mechanical engineering congress and exposition, pp 43–52

    Google Scholar 

  51. Um T, Chen Z, Bart-Smith H (2011) A novel electroactive polymer depth control device for bio-inspired underwater vehicles. In: Proceedings of the IEEE international conference on robotics and automation, pp 172–177

    Google Scholar 

  52. Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (Ro-bojelly) actuated by shape memory alloy composite actuators. Bioinspir Biomim 6(3):036004 (16 pp)

    Google Scholar 

  53. Wang Z, Wang Y, Li J, Hang G (2009) A micro biomimetic manta ray robot fish actuated by SMA. In: Proceedings of the 2009 IEEE international conference on robotics and biomimetics (ROBIO), pp 1809–1813

    Google Scholar 

  54. Yeom SW, Oh IK (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085002 (10 pp)

    Google Scholar 

  55. Yim W, Lee J, Kim KJ (2007) An artificial muscle actuator for biomimetic underwater propulsors. Bioinspir Biomim 2(2):S31

    Article  Google Scholar 

  56. Yu J, Wang L, Tan M (2007) Geometric optimization of relative link lengths for biomimetic robotic fish. IEEE Trans Robot 23(2):382–386

    Article  Google Scholar 

  57. Zhao S, Yuh J (2005) Experimental study on advanced underwater robot control. IEEE Trans Robot 21(4):695–703

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Office of Naval Research (ONR) Grant N000140810640, National Science Foundation (NSF) CAREER Grant ECCS 0547131, ONR under the Multidisciplinary University Research Initiative (MURI) Grant N00014-08-1-0642, and the David and Lucille Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Z., Bart-Smith, H., Tan, X. (2015). IPMC-Actuated Robotic Fish. In: Du, R., Li, Z., Youcef-Toumi, K., Valdivia y Alvarado, P. (eds) Robot Fish. Springer Tracts in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46870-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46870-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46869-2

  • Online ISBN: 978-3-662-46870-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics