Skip to main content

Functionally Graded Metallic Biomaterials

  • Chapter
Advances in Metallic Biomaterials

Abstract

In functionally graded materials (FGMs), the composition and/or microstructure gradually changes over the volume [3–5], resulting in corresponding changes in the properties of the materials. There are many areas of application for FGMs, and one of them is biomedical application. In this chapter, at first, the merits of the metallic biomaterials with graded composition and/or microstructure are described. Then, microstructures and mechanical properties of Ti/biodegradable-polymer FGMs for bone tissue by spark plasma sintering (SPS) method, continuous graded composition in Ti–ZrO2 bio-FGMs by mixed-powder pouring method, and Al-based FGMs containing TiO2 nanoparticles with antibacterial activity by a centrifugal mixed-powder method are introduced. Also, our experimental results of white ceramic coating on Ti–29Nb–13Ta–4.6Zr alloy for dental application and magnetic graded materials by inhomogeneous heat treatment of SUS304 stainless steel are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadollah A, Bahreininejad A (2012) Optimum functionally gradient materials for dental implant using simulated annealing. In: Tsuzuki MSG (ed) Simulated annealing – single and multiple objective problems. InTech, New York, Croatia. doi:10.5772/45640

    Google Scholar 

  2. Watari F, Yokoyama A, Matsuo H, Miyao R, Uo M, Kawasaki T, Omori M, Hirai T (2001) Biocompatibility of functionally graded implants. In: Ichikawa K (ed) Functionally graded materials in the 21st century. Kluwer Academic Publishers, Boston, pp 187–190

    Google Scholar 

  3. Hirai T (1996) Functional gradient materials. In: Cahan RW, Hassen P, Kramer EJ (eds) Processing of ceramics, Part 2, Materials science and technology, vol 17B. VCH Publishers, Weinheim, pp 293–341

    Google Scholar 

  4. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials, processing and thermomechanical behaviour of graded metals and metal-ceramic composites. IOM Communications Ltd., London

    Google Scholar 

  5. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (eds) (1999) Functionally graded materials: design, processing and applications. Kluwer Academic Publishers, Boston

    Google Scholar 

  6. Wataria F, Yokoyama A, Omori M, Hirai T, Kondo H, Uo M, Kawasaki T (2004) Biocompatibility of materials and development to functionally graded implant for bio-medical application. Comput Sci Technol 64:893–908

    Article  Google Scholar 

  7. Amada S (1995) Hierarchical functionally gradient structures of bamboo, barley, and corn. MRS Bull 20:35–36

    Google Scholar 

  8. Watanabe Y, Sato H (2011) Review fabrication of functionally graded materials under a centrifugal force. In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry. InTech, New York, Croatia, pp 133–150

    Google Scholar 

  9. Sampath S, Herman H, Shimoda N, Saito T (1995) Thermal spray processing of FGMs. MRS Bull 20:27–31

    Google Scholar 

  10. Kondo H, Yokoyama A, Omori M, Ohkubo A, Hirai T, Watari F, Uo M, Kawasaki T (2004) Fabrication of titanium nitride/apatite functionally graded implants by spark plasma sintering. Mater Trans 45:3156–3162

    Article  Google Scholar 

  11. Lim Y-M, Park Y-J, Yun Y-H, Hwang K-S (2002) Functionally graded Ti/HAP coatings on Ti–6Al–4 V obtained by chemical solution deposition. Ceram Int 28:37–41

    Article  Google Scholar 

  12. Yin GF, Luo JM, Zheng CQ, Tong HH, Huo YF, Mu LL (1999) Preparation of DLC gradient biomaterials by means of plasma source ion implant-ion beam enhanced deposition. Thin Solid Films 345:67–70

    Article  Google Scholar 

  13. Sato M, Tu R, Goto T, Ueda K, Narushima T (2009) Preparation of functionally graded Bio-ceramic film by MOCVD. Mater Sci Forum 631–632:193–198

    Article  Google Scholar 

  14. Watanabe Y, Iwasa Y, Sato H, Teramoto A, Abe K, Miura-Fujiwara E (2011) Microstructures and mechanical properties of titanium / biodegradable-polymer FGMs for bone tissue fabricated by spark plasma sintering method. J Mater Process Technol 211:1919–1926

    Article  Google Scholar 

  15. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–396

    Article  Google Scholar 

  16. Narushima T (2005) Titanium and its alloys as biomaterials. J Jpn Inst Light Met 55:561–565

    Article  Google Scholar 

  17. Ueda M, Sasaki Y, Ikeda M, Ogawa M (2009) Chemical-hydrothermal synthesis of bioinert ZrO2-TiO2 film on Ti substrates. Mater Trans 50:2104–2107

    Article  Google Scholar 

  18. Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S (2005) Spherulite growth of L-lactide copolymers: effects of tacticity and comonomers. Polymer 46:4917–4927

    Article  Google Scholar 

  19. Sato H, Umaoka S-i, Watanabe Y, Kim I-S, Kawahara M, Tokita M (2007) Biodegradable fiber reinforced Ti composite fabricated by spark plasma sintering method. Mater Sci Forum 539–543:3201–3206

    Article  Google Scholar 

  20. Miura-Fujiwara E, Teramoto T, Sato H, Kobayashi E, Watanabe Y (2010) Fabrication of Ti-based biodegradable material composites prepared by spark plasma sintering method. Mater Sci Forum 654–656:2158–2161

    Article  Google Scholar 

  21. Hasebe T, Kobayashi E, Tezuka H, Sato T (2013) Effects of sintering conditions on mechanical properties of biomedical porous Ti produced by spark plasma sintering. Jpn J Appl Phys 52:01AE03 (4 pages)

    Article  Google Scholar 

  22. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153

    Article  Google Scholar 

  23. Watanabe Y, Miura-Fujiwara E, Sato H (2010) Fabrication of functionally graded materials by centrifugal slurry-pouring method and centrifugal mixed-powder method. J Jpn Soc Powder Powder Metall 57:321–326

    Article  Google Scholar 

  24. Kang CG, Rohatgi PK (1996) Transient thermal analysis of solidification in a centrifugal casting for composite materials containing particle segregation. Metall Mater Trans B 27:277–285

    Article  Google Scholar 

  25. Watanabe Y, Yamanaka N, Fukui Y (1998) Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method. Compos Part A 29A:595–601

    Article  Google Scholar 

  26. Piconi C, Maccauro G (1999) Review Zirconia as a ceramic biomaterial. Biogeosciences 20:1–25

    Google Scholar 

  27. Watanabe Y, Miura-Fujiwara E, Sato H (2011) Fabrication of functionally graded materials by combination of centrifugal force and sintering method. J Jpn Soc Powder Powder Metall 58:11–17

    Article  Google Scholar 

  28. Jayachandran M, Tsukamoto H, Sato H, Watanabe Y (2013) Formation behavior of continuous graded composition in Ti-ZrO2 functionally graded material fabricated by mixed-powder pouring method. J Nanomater 2013:504631 (8 pages)

    Google Scholar 

  29. Miura E, Tabaru T, Liu J, Tanaka Y, Shiraishi T, Hisatsune K (2004) Effect of gold coating on interfacial reaction between dental porcelain and titanium. Mater Trans 45:3044–3049

    Article  Google Scholar 

  30. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of New β type titanium alloys for implant materials. Mater Sci Eng A243:244–249

    Article  Google Scholar 

  31. Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S (2002) Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 43:2970–2977

    Article  Google Scholar 

  32. Miura-Fujiwara E, Yamada S, Obata A, Sato H, Watanabe Y, Kasuga T, Niinomi M (2012) Oxidation behavior and effect of layer thickness on whiteness and exfoliation behavior of Oxide Film Formed on Ti-Nb-Ta-Zr Alloy. In: Proceedings of the Ti-2011 conference, III, China National Convention Center, Beijing, China, pp 2116–2120

    Google Scholar 

  33. Miura-Fujiwara E, Mizushima K, Yamada S, Watanabe Y, Kasuga T, Niinomi M, Yamasaki T (2013) Aesthetic and mechanical properties of oxide coated Ti-Nb-Ta-Zr alloys as a dental material. In: Proceedings of the 8th pacific rim international conference on advanced materials and processing, TMS (The Minerals, Metals & Materials Society), Hilton Waikoloa Village, Waikoloa, HI, USA, pp 1543–1550

    Google Scholar 

  34. Obata A, Miura-Fujiwara E, Shimizu A, Maeda H, Nakai M, Watanabe Y, Niinomi M, Kasuga T (2013) White-ceramic conversion on Ti-29Nb-13Ta-4.6Zr surface for dental applications. Adv Mater Sci Eng 2013:501621 (9 pages)

    Article  Google Scholar 

  35. Miura-Fujiwara E, Mizushima K, Watanabe Y, Kasuga T, Niinomi M (2014) Color tone and interfacial microstructure of white oxide layer on CP Ti and Ti-Nb-Ta-Zr alloys. Jpn J Appl Phys 53:11RD02

    Article  Google Scholar 

  36. Hasegawa A, Motonomi A, Ikeda I, Kawaguchi S (2000) Color of natural tooth crown in Japanese people. Color Res Appl 25:43–48

    Article  Google Scholar 

  37. Shiba W, Uno M, Ishigami H, Kurachi M (2009) Means for reproducing shade guide color with laboratory-cured prosthetic composite. J Gifu Dent Soc 35:149–159

    Google Scholar 

  38. Yuan W, Ji J, Fu J, Shen J (2008) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res Part B 85B:556–563

    Article  Google Scholar 

  39. Tang W, Chen Z, Katoh S (2004) Preparation of a nanocrystalline TiO2 photocatalyst using a dry-process with acetylene black. Chem Lett 33:1200–1201

    Article  Google Scholar 

  40. Watanabe Y, Inaguma Y, Sato H, Miura-Fujiwara E (2009) A novel fabrication method for functionally graded materials under centrifugal force: the centrifugal mixed-powder method. Materials 2:2510–2525

    Article  Google Scholar 

  41. Uenishi K, Seki M, Takatsugu M, Kunimasa T, Kobayashi KF, Ikeda T, Tsuboi A (2002) Microstructure and tensile strength of stainless steel wires micro spot melted by YAG laser. Mater Trans 43:3083–3087

    Article  Google Scholar 

  42. Mangonon PL, Thomas G (1970) Structure and properties of thermal-mechanically treated 304 stainless steel. Metall Trans 1:1587–1594

    Article  Google Scholar 

  43. Watanabe Y, Nakamura Y, Fukui Y, Nakanishi K (1993) A magnetic­functionally graded material manufactured with deformation­induced martensitic transformation. J Mater Sci Lett 12:326–328

    Article  Google Scholar 

  44. Watanabe Y, Kang SH, Chan JW, Morris JW Jr (1999) Fabrication of magnetically graded material by rolling deformation of wedge-shaped 304 stainless steel. Mater Trans JIM 40:961–966

    Article  Google Scholar 

  45. Watanabe Y, Momose I (2004) Magnetically graded materials fabricated by inhomogeneous heat treatment of deformed stainless steel. Ironmak Steelmak 31:265–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watanabe, Y., Sato, H., Miura-Fujiwara, E. (2015). Functionally Graded Metallic Biomaterials. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46842-5_9

Download citation

Publish with us

Policies and ethics