LinkViews: An Integration Framework for Relational and Stream Systems

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 206)

Abstract

Applications of stream data can be found in a wide variety of domains and settings, such as supply chain (RFID sensors), energy management (smart meters), social networks (status updates) and many others. While data stream management systems (DSMS) are technologically mature, they lack standardization in terms of modeling, querying and interoperability. In addition, so far, stream processing was confined within an organization. However, modern applications need to integrate and manage aggregates produced by a variety of stream engines, from complete DSMS to stand-alone stream-handling components. In this paper we discuss a relational-based framework that mix RDBMS’ data and stream aggregates managed by different stream systems, a largely uninvestigated research area. We claim that this framework: (a) is transparent to naive database users, (b) addresses an important and useful class of queries, overlooked so far, (c) presents numerous optimization opportunities to minimize communication and processing costs, and (d) can serve as a standard for relational-stream interoperability.

Keywords

Data streams Relational databases Integration 

References

  1. 1.
    Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data stream management. J. Very Large Databases 12(2), 120–139 (2003)CrossRefGoogle Scholar
  2. 2.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: Stream: the Stanford stream data manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)Google Scholar
  3. 3.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. J. Very Large Databases 15(2), 121–142 (2006)CrossRefGoogle Scholar
  4. 4.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 1–16 (2002)Google Scholar
  5. 5.
    Botan, I., Cho, Y., Derakhshan, R., Dindar, N., Gupta, A., Haas, L.M., Kim, K., Lee, C., Mundada, G., Shan, M., Tatbul, N., Yan, Y., Yun, B., Zhang, J.: A demonstration of the MaxStream federated stream processing system. In: Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, pp. 1093–1096 (2010)Google Scholar
  6. 6.
    Botan, I., Cho, Y., Derakhshan, R., Dindar, N., Haas, L., Kim, K., Tatbul, Nesime: Federated stream processing support for real-time business intelligence applications. In: Castellanos, M., Dayal, U., Miller, R.J. (eds.) BIRTE 2009. LNBIP, vol. 41, pp. 14–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Botan, I., Derakhshan, R., Dindar, N., Haas, L.M., Miller, R.J., Tatbul, N.: SECRET: a model for analysis of the execution semantics of stream processing systems. In: Proceedings of the Very Large Databases, PVLDB, vol. 3, iss. 1, pp. 232–243, September 2010Google Scholar
  8. 8.
    Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, S., Tatbul, N., Zdonik, S. B.: Monitoring streams - a new class of data management applications. In: Proceedings of 28th International Conference on Very Large Databases, VLDB 2002, pp. 215–226 (2002)Google Scholar
  9. 9.
    Castellanos, M., Wang, S., Dayal, U., Gupta, C.: SIE-OBI: a streaming information extraction platform for operational business intelligence. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, pp. 1105–1110 (2010)Google Scholar
  10. 10.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M. A.: TelegraphCQ: continuous dataflow processing for an uncertain world. In: Proceedings of the 1st Biennial Conference on Innovative Data Systems Research. CIDR 2003 (2003)Google Scholar
  11. 11.
    Chatziantoniou, D., Pramatari, K., and Sotiropoulos, Y.: COSTES: continuous spreadsheet-like computations. In: International Workshop on RFID Data Management, ICDE Workshops, RFDM 2008, pp. 82–87 (2008)Google Scholar
  12. 12.
    Condie, T., Conway, N., Alvaro, P., Hellerstein J. M., Elmeleegy, K., Sears, R.: MapReduce online. In: Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2010 (2010)Google Scholar
  13. 13.
    Cranor, C.D., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope. A stream database for network applications. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2003, pp. 647–651Google Scholar
  14. 14.
    Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Cetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.B.: Towards a streaming SQL standard. In: Proceedings of the Very Large Databases, PVLDB vol. 1 iss. 2, pp. 1379–1390, August 2008Google Scholar
  15. 15.
    Spring, J.H., Privat, J., Guerraoui, R., Vitek J.: Streamflex: high-throughput stream programming in java. In: Proceedings of the 22nd Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA 2007, pp. 211–228 (2007)Google Scholar
  16. 16.
    Stonebraker, M., Cetintemel, U., Zdonik, S.B.: The 8 requirements of real-time stream processing. SIGMOD Record 34, 42–47 (2005)CrossRefGoogle Scholar
  17. 17.
    STREAM: The Stanford Stream Data Manager, User Guide and Design Document (2013). http://infolab.stanford.edu/stream/code/user.pdf. Accessed 6 May 2013
  18. 18.
    Tatbul, N.: Streaming data integration: challenges and opportunities. In: 2nd International Workshop on New Trends in Information Integration, NTII 2010, pp. 155–158 (2010)Google Scholar
  19. 19.
    Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: a language for streaming applications. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Wu, E., Diao, Y., Rizvi., S.: High-performance complex event processing over streams. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2006, pp. 407–418 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Management Science and TechnologyAthens University of Economics and BusinessAthensGreece

Personalised recommendations