Privacy Amplification in the Isolated Qubits Model

  • Yi-Kai LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9057)


Isolated qubits are a special class of quantum devices, which can be used to implement tamper-resistant cryptographic hardware such as one-time memories (OTM’s). Unfortunately, these OTM constructions leak some information, and standard methods for privacy amplification cannot be applied here, because the adversary has advance knowledge of the hash function that the honest parties will use.

In this paper we show a stronger form of privacy amplification that solves this problem, using a fixed hash function that is secure against all possible adversaries in the isolated qubits model. This allows us to construct single-bit OTM’s which only leak an exponentially small amount of information.

We then study a natural generalization of the isolated qubits model, where the adversary is allowed to perform a polynomially-bounded number of entangling gates, in addition to unbounded local operations and classical communication (LOCC). We show that our technique for privacy amplification is also secure in this setting.


Hash Function Quantum Circuit Security Parameter Oblivious Transfer Kraus Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997)CrossRefGoogle Scholar
  2. 2.
    Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)CrossRefGoogle Scholar
  3. 3.
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRefGoogle Scholar
  4. 4.
    Buhrman, H., Christandl, M., Schaffner, C.: Complete Insecurity of Quantum Protocols for Classical Two-Party Computation. Phys. Rev. Lett. 109, 160501 (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, Y.-K.: Single-Shot Security for One-Time Memories in the Isolated Qubits Model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 19–36. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Liu, Y.-K.: Building one-time memories from isolated qubits. ITCS, pp. 269–286 (2014)Google Scholar
  7. 7.
    Saeedi, K., et al.: Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28. Science 342(6160), 830–833 (2013)CrossRefGoogle Scholar
  8. 8.
    Dreau, A., et al.: Single-Shot Readout of Multiple Nuclear Spin Qubits in Diamond under Ambient Conditions. Phys. Rev. Lett. 110, 060502 (2013)CrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding Cryptography on Tamper-Proof Hardware Tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively Secure Garbling with Applications to One-Time Programs and Secure Outsourcing. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 344–360. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Vadhan, S.P.: Pseudorandomness. Foundations and Trends in Theoretical Computer Science 7(13), 1–336 (2011)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Bellare, M., Rompel, J.: Randomness-Efficient Oblivious Sampling. FOCS, 276–287 (1994)Google Scholar
  15. 15.
    Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding Bounds for Applications with Limited Independence. SIAM J. Discrete Math. 8(2), 223–250 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Liu, Y.-K.: Privacy amplification in the isolated qubits model. Arxiv:1410.3918Google Scholar
  17. 17.
    Hanson, D.L., Wright, F.T.: A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables. Ann. Math. Stat. 42(3), 1079–1083 (1971)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rudelson, M., Vershynin, R.: Hanson-Wright inequality and sub-gaussian concentration. Electronic Communications in Probability 18, 1–9 (2013)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983). original manuscript written circa 1970CrossRefGoogle Scholar
  20. 20.
    Salvail, L.: Quantum Bit Commitment from a Physical Assumption. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  21. 21.
    Pastawski, F., Yao, N.Y., Jiang, L., Lukin, M.D., Cirac, J.I.: Unforgeable Noise-Tolerant Quantum Tokens. Proc. Nat. Acad. Sci. 109, 16079–16082 (2012)CrossRefGoogle Scholar
  22. 22.
    Bouman, N.J., Fehr, S., González-Guillén, C., Schaffner, C.: An All-But-One Entropic Uncertainty Relation, and Application to Password-Based Identification. In: Kawano, Y. (ed.) TQC 2012. LNCS, vol. 7582, pp. 29–44. Springer, Heidelberg (2012) Google Scholar
  23. 23.
    Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Childs, A.M., Leung, D., Mancinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. arXiv:1206.5822
  25. 25.
    DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum Data Hiding. IEEE Trans. Inf. Theory 48(3), 580–599 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Eggeling, T., Werner, R.F.: Hiding Classical Data in Multipartite Quantum States. Phys. Rev. Lett. 89, 097905 (2002)CrossRefGoogle Scholar
  27. 27.
    Masanes, L.: Universally Composable Privacy Amplification from Causality Constraints. Phys. Rev. Lett. 102, 140501 (2009)CrossRefGoogle Scholar
  28. 28.
    Trevisan, L., Vadhan, S.P.: Extracting Randomness from Samplable Distributions. FOCS, 32–42 (2000)Google Scholar
  29. 29.
    Kamp, J., Zuckerman, D.: Deterministic Extractors for Bit-Fixing Sources and Exposure-Resilient Cryptography. SIAM J. Comput. 36(5), 1231–1247 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Gabizon, A.: Deterministic Extraction from Weak Random Sources, Springer-Verlag (2011)Google Scholar
  31. 31.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  32. 32.
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  33. 33.
    Damgård, I.B., Fehr, S., Renner, R.S., Salvail, L., Schaffner, C.: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  34. 34.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entanglement. Rev. Mod. Phys. 81, 865–942 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.Applied and Computational Mathematics DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations