Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

Annual International Conference on the Theory and Applications of Cryptographic Techniques

EUROCRYPT 2015: Advances in Cryptology - EUROCRYPT 2015 pp 281–310Cite as

  1. Home
  2. Advances in Cryptology - EUROCRYPT 2015
  3. Conference paper
The Bitcoin Backbone Protocol: Analysis and Applications

The Bitcoin Backbone Protocol: Analysis and Applications

  • Juan Garay15,
  • Aggelos Kiayias16 &
  • Nikos Leonardos17 
  • Conference paper
  • First Online: 01 January 2015
  • 11k Accesses

  • 567 Citations

  • 19 Altmetric

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9057))

Abstract

Bitcoin is the first and most popular decentralized cryptocurrency to date. In this work, we extract and analyze the core of the Bitcoin protocol, which we term the Bitcoin backbone, and prove two of its fundamental properties which we call common prefix and chain quality in the static setting where the number of players remains fixed. Our proofs hinge on appropriate and novel assumptions on the “hashing power” of the adversary relative to network synchronicity; we show our results to be tight under high synchronization.

Next, we propose and analyze applications that can be built “on top” of the backbone protocol, specifically focusing on Byzantine agreement (BA) and on the notion of a public transaction ledger. Regarding BA, we observe that Nakamoto’s suggestion falls short of solving it, and present a simple alternative which works assuming that the adversary’s hashing power is bounded by \(1/3\). The public transaction ledger captures the essence of Bitcoin’s operation as a cryptocurrency, in the sense that it guarantees the liveness and persistence of committed transactions. Based on this notion we describe and analyze the Bitcoin system as well as a more elaborate BA protocol, proving them secure assuming high network synchronicity and that the adversary’s hashing power is strictly less than \(1/2\), while the adversarial bound needed for security decreases as the network desynchronizes.

Keywords

  • Hash Function
  • Random Oracle
  • Input Tape
  • Overwhelming Probability
  • Cryptographic Hash Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

A. Kiayias and N. Leonardos—Research supported by ERC project CODAMODA.

N. Leonardos—Work completed while at the National and Kapodistrian University of Athens.

The full version of this paper can be found at the Cryptology ePrint Archive [22].

Download to read the full chapter text

Chapter PDF

References

  1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Secure multiparty computations on bitcoin. IEEE Security and Privacy (2014)

    Google Scholar 

  2. Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged Byzantine impostors. Technical Report YALEU/DCS/TR-1332, Yale University Department of Computer Science (July 2005)

    Google Scholar 

  3. Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On bitcoin and red balloons. In: Faltings, B., Leyton-Brown, K., Ipeirotis, P. (eds.) EC, pp. 56–73. ACM (2012)

    Google Scholar 

  4. Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash

  5. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without authentication. J. Cryptology 24(4), 720–760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS 1993, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, November 3–5, pp. 62–73 (1993)

    Google Scholar 

  7. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.) PODC, pp. 27–30. ACM (1983)

    Google Scholar 

  8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin. IACR Cryptology ePrint Archive 2014, 349 (2014)

    Google Scholar 

  9. Bentov, I., Kumaresan, R.: How to Use Bitcoin to Design Fair Protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Bentov, I., Kumaresan, R.: How to use bitcoin to incentivize correct computations. ACM CCS 2014, (2014)

    Google Scholar 

  11. Berman, P., Garay, J.A.: Randomized distributed agreement revisited. In: Digest of Papers: FTCS-23, The Twenty-Third Annual International Symposium on Fault-Tolerant Computing, Toulouse, France, June 22–24, pp. 412–419. IEEE Computer Society (1993)

    Google Scholar 

  12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chaum, D.: Blind signatures for untraceable payments, pp. 199–203 (1982)

    Google Scholar 

  14. Cunicula. Why doesn’t bitcoin use a tiebreaking rule when comparing chains of equal length? (2013) https://bitcointalk.org/index.php?topic=355644.0

  15. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In: P2P, pp. 1–10. IEEE (2013)

    Google Scholar 

  16. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  17. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Financial Cryptography (2014)

    Google Scholar 

  18. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Borowsky, E., Rajsbaum, S. (eds.) PODC, pp. 211–220. ACM (2003)

    Google Scholar 

  21. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast, revisited. In: Gavoille, C., Fraigniaud, P., (eds.) Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6–8, pp. 179–186. ACM (2011)

    Google Scholar 

  22. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and Applications. IACR Cryptology ePrint Archive 2014, 765 (2014)

    Google Scholar 

  23. Hirt, M., Zikas, V.: Adaptively Secure Broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against connection depletion attacks. In: NDSS. The Internet Society (1999)

    Google Scholar 

  25. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. Journal of Computer and System Sciences 75(2), 91–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work (July 2013). http://primecoin.io/bin/primecoin-paper.pdf

  27. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  28. Miller, A., LaViola, J.J.: Anonymous byzantine consensus from moderately-hard puzzles: A model for bitcoin. University of Central Florida. Tech Report, CS-TR-14-01 (April 2014)

    Google Scholar 

  29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008) http://bitcoin.org/bitcoin.pdf

  30. Nakamoto, S.: The proof-of-work chain is a solution to the byzantine generals’ problem. The Cryptography Mailing List (November 2008). https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html

  31. Nakamoto, S.: Bitcoin open source implementation of p2p currency (February 2009). http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source

  32. Neiger, G.: Distributed consensus revisited. Inf. Process. Lett. 49(4), 195–201 (1994)

    Article  MATH  Google Scholar 

  33. Okun, M.: Agreement Among Unacquainted Byzantine Generals. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 499–500. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Okun, M.: Distributed computing among unacquainted processors in the presence of byzantine distributed computing among unacquainted processors in the presence of byzantine failures. Ph.D. Thesis Hebrew University of Jerusalem (2005)

    Google Scholar 

  35. Okun, M., Barak, A.: Efficient algorithms for anonymous byzantine agreement. Theor. Comp. Sys. 42(2), 222–238 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rabin, M.O.: Randomized byzantine generals. In: FOCS, pp. 403–409. IEEE Computer Society (1983)

    Google Scholar 

  38. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical report, Cambridge, MA, USA (1996)

    Google Scholar 

  39. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. fast money grows on trees, not chains. IACR Cryptology ePrint Archive, 2013:881 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Yahoo Labs, Sunnyvale, CA, USA

    Juan Garay

  2. Department of Informatics and Telecommunications, University of Athens, Athens, Greece

    Aggelos Kiayias

  3. LIAFA, Université Paris Diderot–Paris 7, Paris, France

    Nikos Leonardos

Authors
  1. Juan Garay
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Aggelos Kiayias
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nikos Leonardos
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Aggelos Kiayias .

Editor information

Editors and Affiliations

  1. University of Bristol, Bristol, United Kingdom

    Elisabeth Oswald

  2. Kryptoplexität, TU Darmstadt, Darmstadt, Germany

    Marc Fischlin

Rights and permissions

Reprints and permissions

Copyright information

© 2015 International Association for Cryptologic Research

About this paper

Cite this paper

Garay, J., Kiayias, A., Leonardos, N. (2015). The Bitcoin Backbone Protocol: Analysis and Applications. In: Oswald, E., Fischlin, M. (eds) Advances in Cryptology - EUROCRYPT 2015. EUROCRYPT 2015. Lecture Notes in Computer Science(), vol 9057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46803-6_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-46803-6_10

  • Published: 14 April 2015

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46802-9

  • Online ISBN: 978-3-662-46803-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature