Ciphers for MPC and FHE

  • Martin R. Albrecht
  • Christian Rechberger
  • Thomas Schneider
  • Tyge Tiessen
  • Michael Zohner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9056)

Abstract

Designing an efficient cipher was always a delicate balance between linear and non-linear operations. This goes back to the design of DES, and in fact all the way back to the seminal work of Shannon.

Here we focus, for the first time, on an extreme corner of the design space and initiate a study of symmetric-key primitives that minimize the multiplicative size and depth of their descriptions. This is motivated by recent progress in practical instantiations of secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge proofs (ZK) where linear computations are, compared to non-linear operations, essentially “free”.

We focus on the case of a block cipher, and propose the family of block ciphers “LowMC”, beating all existing proposals with respect to these metrics by far. We sketch several applications for such ciphers and give implementation comparisons suggesting that when encrypting larger amounts of data the new design strategy translates into improvements in computation and communication complexity by up to a factor of 5 compared to AES-128, which incidentally is one of the most competitive classical designs. Furthermore, we identify cases where “free XORs” can no longer be regarded as such but represent a bottleneck, hence refuting this commonly held belief with a practical example.

Keywords

Block cipher Multiplicative complexity Multiplicative depth Secure multiparty computation Fully homomorphic encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABH10]
    Albrecht, M.R., Bard, G.V., Hart, W.: Algorithm 898: Efficient multiplication of dense matrices over GF(2). ACM Transactions on Mathematical Software 37(1) (2010)Google Scholar
  2. [AIK06]
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^{\text{0 }}\). SIAM Journal on Computing 36(4), 845–888 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. [AL07]
    Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. [ALSZ13]
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: Computer and Communications Security (CCS), pp. 535–548. ACM (2013). Code: http://github.com/MichaelZohner/OTExtension
  5. [BC86]
    Brassard, G., Crépeau, C.: Zero-knowledge simulation of boolean circuits. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 223–233. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  6. [BCC11]
    Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. [BCG+12]
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. [BDP00]
    Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. Journal of Cryptology 13(4), 449–472 (2000)CrossRefMATHMathSciNetGoogle Scholar
  9. [BGV11]
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Electronic Colloquium on Computational Complexity (ECCC) 18, 111 (2011)Google Scholar
  10. [BMP13]
    Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. Journal of Cryptology 26(2), 280–312 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. [BMvT78]
    Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems (corresp.). IEEE Transactions on Information Theory 24(3), 384–386 (1978)CrossRefMATHGoogle Scholar
  12. [BODD+14]
    Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.: Cryptanalysis of SP Networks with Partial Non-Linear Layers. In: Cryptology ePrint Archive, Report 2014/228 (2014). http://eprint.iacr.org/2014/228
  13. [BP12]
    Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-box. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376, pp. 287–298. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. [BPP00]
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis \((\wedge, \oplus, 1)\). Theoretical Computer Science 235(1), 43–57 (2000)CrossRefMATHMathSciNetGoogle Scholar
  15. [BSS+13]
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. In: Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404
  16. [Can05]
    Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. [CDK09]
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  18. [CHK+12]
    Choi, S.G., Hwang, K.-W., Katz, J., Malkin, T., Rubenstein, D.: Secure multi-party computation of boolean circuits with applications to privacy in on-line marketplaces. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 416–432. Springer, Heidelberg (2012). http://www.ee.columbia.edu/~kwhwang/projects/gmw.html CrossRefGoogle Scholar
  19. [CHM11]
    Courtois, N.T., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. In: Cryptology ePrint Archive, Report 2011/475 (2011). http://eprint.iacr.org/2011/475
  20. [DHS14]
    Doroz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using NTRU. In: Cryptology ePrint Archive, Report 2014/039 (2014). http://eprint.iacr.org/2014/039
  21. [DLT14]
    Damgård, I., Lauritsen, R., Toft, T.: An empirical study and some improvements of the minimac protocol for secure computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  22. [DPVAR00]
    Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: Noekeon. In: First Open NESSIE Workshop (2000)Google Scholar
  23. [DS09]
    Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  24. [DSES14]
    Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic evaluation of block ciphers using Prince. In: Cryptology ePrint Archive, Report 2014/233 (2014), presented at Workshop on Applied Homomorphic Cryptography and Encrypted Computing (WAHC 2014). http://eprint.iacr.org/2014/233
  25. [DSZ15]
    Demmler, D., Schneider, T., Zohner, M.: Aby - a framework for efficient mixed-protocol secure two-party computation. In: Network and Distributed System Security, NDSS 2015. The Internet Society (2015). Code: https://github.com/encryptogroup/ABY
  26. [DZ13]
    Damgård, I., Zakarias, S.: Constant-overhead secure computation of boolean circuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 621–641. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. [FJN+13]
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: MiniLEGO: efficient secure two-party computation from general assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  28. [FJN14]
    Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B.: Faster maliciously secure two-party computation using the GPU. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 358–379. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  29. [FLS+10]
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Function Family. Submission to NIST (Round 3) (2010)Google Scholar
  30. [FN13]
    Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computation using the GPU. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 339–356. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  31. [GGNPS13]
    Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  32. [GHS12a]
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  33. [GHS12b]
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In: Cryptology ePrint Archive, Report 2012/099 (2012). http://eprint.iacr.org/2012/099
  34. [GLSV14]
    Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-designs: Bitslice encryption for efficient masked software implementations. In: FSE 2014. LNCS, vol. 8540. Springer, Heidelberg (2015)Google Scholar
  35. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Symposium on Theory of Computing (STOC), pp. 218–229. ACM (1987)Google Scholar
  36. [GNPW13]
    Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. In: Cryptology ePrint Archive, Report 2013/713 (2013). http://eprint.iacr.org/2013/713
  37. [HEKM11]
    Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security. USENIX (2011)Google Scholar
  38. [HJMM08]
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  39. [HKE13]
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  40. [HKK+14]
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  41. [HS13]
    Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library (2013). https://github.com/shaih/HElib/
  42. [HS14]
    Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  43. [JKO13]
    Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Computer and Communications Security (CCS), pp. 955–966. ACM (2013)Google Scholar
  44. [KLPR10]
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  45. [Knu94]
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  46. [KS08]
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  47. [KSS12]
    Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious adversaries. In: USENIX Security. USENIX (2012)Google Scholar
  48. [Lin13]
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  49. [LOS14]
    Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  50. [LP07]
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  51. [LP11]
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  52. [LPS08]
    Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  53. [LR14]
    Lindell, Y., Riva, B.: Cut-and-choose yao-based secure computation in the online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  54. [Mat93]
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  55. [MNPS04]
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party computation system. In: USENIX Security, pp. 287–302. USENIX (2004)Google Scholar
  56. [MS94]
    Meier, W., Staffelbach, O.: The self-shrinking generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  57. [MS13]
    Mella, S., Susella, R.: On the homomorphic computation of symmetric cryptographic primitives. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 28–44. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  58. [NNOB12]
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  59. [PRC12]
    Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  60. [PSSW09]
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  61. [RASA14]
    Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total Break of Zorro using Linear and Differential Attacks. In: Cryptology ePrint Archive, Report 2014/220 (2014). http://eprint.iacr.org/2014/220
  62. [SS11]
    Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  63. [SS13]
    Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assumptions. In: Computer and Communications Security (CCS), pp. 523–534. ACM (2013)Google Scholar
  64. [SZ13]
    Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  65. [TS]
    Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
  66. [Wag99]
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  67. [WWGY13]
    Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential Cryptanalysis and Linear Distinguisher of Full-Round Zorro. In: Cryptology ePrint Archive, Report 2013/775 (2013). http://eprint.iacr.org/2013/775
  68. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  • Martin R. Albrecht
    • 1
  • Christian Rechberger
    • 2
  • Thomas Schneider
    • 3
  • Tyge Tiessen
    • 2
  • Michael Zohner
    • 3
  1. 1.Information Security Group, Royal HollowayUniversity of LondonLondonUK
  2. 2.Technical University of DenmarkCopenhagenDenmark
  3. 3.TU DarmstadtDarmstadtGermany

Personalised recommendations