Skip to main content

Technische Entwicklung, Bau und Test von Brenngaserzeugungskomponenten

  • Chapter
  • First Online:
  • 8038 Accesses

Part of the book series: VDI-Buch ((VDI-BUCH))

Zusammenfassung

Unter dem Begriff „Brenngaserzeugung“ wird die Umwandlung von Kraftstoffen, die aus sehr unterschiedlichen Kohlenwasserstoffen zusammengesetzt sein können, in ein Gasgemisch verstanden, das zu einem erheblichen Anteil aus Wasserstoff besteht und in die Anode einer Brennstoffzelle geleitet werden kann. Es werden die drei wesentlichen Komponenten der Brenngaserzeugung vorgestellt. Der autotherme Reformer wandelt den flüssigen Kraftstoff in einem katalytischen Prozess zusammen mit Wasserdampf und Luft in ein wasserstoffreiches Gasgemisch, das sogenannte Reformat, um. Der Wasser-Gas-Shift Reaktor hat die Funktion, die Konzentration an Kohlenmonoxid im Reformat deutlich zu verringern. Zu hohe Konzentrationen an Kohlenmonoxid im Eduktgasstrom der Brennstoffzelle führen zu einer adsorptiven Vergiftung der katalytisch aktiven Zentren in der Anode der Brennstoffzelle. Der katalytische Brenner hat zwei wesentliche Funktionen. Zum einen werden in seinem katalytischen Teil die brennbaren Komponenten zu Kohlendioxid und Wasser umgesetzt. Zum anderen wird im Wärmeaustauscher des katalytischen Brenners ein wesentlicher Teil des Wasserstroms, der für die autotherme Reformierung benötigt wird, verdampft und überhitzt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Factorial Designs at Two Levels, Statistics for Experiments. Wiley, New York (1978)

    Google Scholar 

  2. Ekdunge, P., Kylhammar, L., Nordström, J.: Powercell fuel processor development and its application in APU system with a PEM fuel cell, AIChE 2013 annual meeting, San Francisco, CA, (2013)

    Google Scholar 

  3. Erdohelyi, A., Cserenyi, J., Solymosi, F.: Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J. Catal 141, 287–299 (1993)

    Article  Google Scholar 

  4. Ferrandon, M., Krause, T.: Role of the oxide support on the performance of Rh catalysts for the autothermal reforming of gasoline and gasoline surrogates to hydrogen. Appl. Catal. A Gen. 311, 135–145 (2006)

    Article  Google Scholar 

  5. Ferrandon, M., Mawdsley, J., Krause, T.: Effect of temperature, steam-to-carbon ratio, and alkali metal additives on improving the sulfur tolerance of a Rh/La–Al2O3 catalyst reforming gasoline for fuel cell applications. Appl. Catal. A Gen. 342, 69–77 (2008)

    Article  Google Scholar 

  6. Harada, M., Takanabe, K., Kubota, J., Domen, K., Goto, T. et al.: Hydrogen production by autothermal reforming of kerosene over MgAlOx-supported Rh catalysts. Appl. Catal. A Gen. 371, 173–178 (2009)

    Article  Google Scholar 

  7. Kaila, R.K., Gutiérrez, A., Krause, A.O.I.: Autothermal reforming of simulated and commercial diesel: The performance of zirconia-supported RhPt catalyst in the presence of sulfur. Appl. Catal. B Environ. 84, 324–331 (2008)

    Article  Google Scholar 

  8. Kang, I., Bae, J.: Autothermal reforming study of diesel for fuel cell application. J. Power Sources 159, 1283–1290 (2006)

    Article  Google Scholar 

  9. Kang, I., Bae, J., Bae, G.: Performance comparison of autothermal reforming for liquid hydrocarbons, gasoline and diesel for fuel cell applications. J. Power Sources 163, 538–546 (2006)

    Article  Google Scholar 

  10. Karatzas, X., Jansson, K., Dawody, J., Lanza, R., Pettersson, L.J.: Microemulsion and incipient wetness prepared Rh-based catalyst for diesel reforming. Catal. Today 175, 515–523 (2011a)

    Article  Google Scholar 

  11. Karatzas, X., Jansson, K., González, A., Dawody, J., Pettersson, L.J.: Autothermal reforming of low-sulfur diesel over bimetallic RhPt supported on Al2O3, CeO2–ZrO2, SiO2 and TiO2. Appl. Catal. B Environ. 106, 476–487 (2011b)

    Article  Google Scholar 

  12. Karatzas, X., Creaser, D., Grant, A., Dawody, J., Pettersson, L.J.: Hydrogen generation from n-tetradecane, low-sulfur and Fischer–Tropsch diesel over Rh supported on alumina doped with ceria/lanthana. Catal. Today 164, 190–197 (2011c)

    Article  Google Scholar 

  13. Kolb, G.: Review: Microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem. Eng. Process. Process Intensif. 65, 1–44 (2013)

    Article  MathSciNet  Google Scholar 

  14. Kolb, G., Cominos, V., Hofmann, C., Pennemann, H., Schürer, J. et al.: Integrated microstructured fuel processors for fuel cell applications. Chem. Eng. Res. Des. 83, 626–633 (2005)

    Article  Google Scholar 

  15. Koryabkina, N.A., Phatak, A.A., Ruettinger, W.F., Farrauto, R.J., Ribeiro, F.H.: Determination of kinetic parameters for the water–gas shift reaction on copper catalysts under realistic conditions for fuel cell applications. J. Catal. 217, 233–239 (2003)

    Google Scholar 

  16. Lenz, B., Aicher, T.: Catalytic autothermal reforming of Jet fuel. J. Power Sources 149, 44–52 (2005)

    Article  Google Scholar 

  17. Lindermeir, A., Kah, S., Kavurucu, S., Mühlner, M.: On-board diesel fuel processing for an SOFC–APU – Technical challenges for catalysis and reactor design. Appl. Catal. B Environ. 70, 488–497 (2007)

    Article  Google Scholar 

  18. Lindström, B., Karlsson, J.A.J., Ekdunge, P., De Verdier, L., Häggendal, B. et al.: Diesel fuel reformer for automotive fuel cell applications. Int. J. Hydrog. Energy 34, 3367–3381 (2009)

    Article  Google Scholar 

  19. Mark, M.F., Maier, W.F.: CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal. 164, 122–130 (1996)

    Article  Google Scholar 

  20. Mayne, J.M., Tadd, A.R., Dahlberg, K.A., Schwank, J.W.: Influence of thiophene on the isooctane reforming activity of Ni-based catalysts. J. Catal. 271, 140–152 (2010)

    Article  Google Scholar 

  21. Mayne, J.M., Dahlberg, K.A., Westrich, T.A., Tadd, A.R., Schwank, J.W.: Effect of metal particle size on sulfur tolerance of Ni catalysts during autothermal reforming of isooctane. Appl. Catal. A Gen. 400, 203–214 (2011)

    Article  Google Scholar 

  22. Meißner, J., Pasel, J., Samsun, R.C., Scharf, F., Wiethege, C. et al.: Catalytic burner with internal steam generation for a fuel-cell-based auxiliary power unit for middle distillates. Int. J. Hydrog. Energy 39, 4131–4142 (2014)

    Article  Google Scholar 

  23. O’Connell, M., Kolb, G., Schelhaas, K.P., Schuerer, J., Tiemann, D. et al.: Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range. Int. J. Hydrog. Energy 34, 6290–6303 (2009)

    Article  Google Scholar 

  24. O’Connell, M., Kolb, G., Schelhaas, K.P., Wichert, M., Tiemann, D. et al.: Towards mass production of microstructured fuel processors for application in future distributed energy generation systems: A review of recent progress at IMM. Chem. Eng. Res. Des. 90, 11–18 (2012)

    Article  Google Scholar 

  25. Parmar, R.D., Kundu, A., Thurgood, C., Peppley, B.A., Karan, K.: Kinetic studies of the autothermal reforming of tetradecane over Pt/Al2O3 catalyst in a fixed-bed reactor. Fuel 89, 1212–1220 (2010)

    Article  Google Scholar 

  26. Pasel, J., Samsun, R.C., Peters, R., Thiele, B., Stolten, D.: Long-term stability at fuel processing of diesel and kerosene. Int. J. Hydrog. Energy. DOI 10.1016/j.ijhydene.2014.03.148

    Google Scholar 

  27. Pasel, J., Cremer, P., Wegner, B., Peters, R., Stolten, D.: Combination of autothermal reforming with water-gas-shift reaction – small-scale testing of different water-gas-shift catalysts. J. Power Sources 126, 112–118 (2004)

    Article  Google Scholar 

  28. Pasel, J., Samsun, R.C., Schmitt, D., Peters, R., Stolten, D.: Test of a water–gas-shift reactor on a 3 kWe-scale – design points for high- and low-temperature shift reaction. J. Power Sources 152, 189–195 (2005)

    Article  Google Scholar 

  29. Pasel, J., Meißner, J., Porš, Z., Samsun, R.C., Tschauder, A. et al.: Autothermal reforming of commercial Jet A-1 on a 5 kWe scale. Int. J. Hydrog. Energy 32, 4847–4858 (2007)

    Article  Google Scholar 

  30. http://www.greencarcongress.com/2006/05/delphis_onboard.html.

    Google Scholar 

  31. Pors, Z., Pasel, J., Tschauder, A., Dahl, R., Peters, R. et al.: Optimised mixture formation for diesel fuel processing. Fuel Cell. 8, 129–137 (2008)

    Article  Google Scholar 

  32. PowerCell prototype fuel cell APU with diesel reformer. Fuel Cell. Bull. 2013, 4–5 (2013)

    Google Scholar 

  33. Rautanen, M., Halinen, M., Noponen, M., Koskela, K., Vesala, H. et al.: Experimental study of an SOFC stack operated with autothermally reformed diesel fuel. Fuel Cell. 13, 304–308 (2013)

    Article  Google Scholar 

  34. Roychoudhury, S., Walsh, D., Mastanduno, R., Junaedi, C., DesJardins, J. et al.: Long term operation of a diesel/JP-8 fuel processor, Fuel Cell seminar. Fuel Cell Associates, Washington, Phoenix, Arizona, U.S.A., (2008)

    Google Scholar 

  35. Shamsi, A., Baltrus, J.P., Spivey, J.J.: Characterization of coke deposited on Pt/alumina catalyst during reforming of liquid hydrocarbons. Appl. Catal. A Gen. 293, 145–152 (2005)

    Article  Google Scholar 

  36. Specchia, S.: Fuel processing activities at European level: A panoramic overview. Int. J. Hydrog. Energy. doi:10.1016/j.ijhydene.2014.04.040

    Google Scholar 

  37. Wei, J., Iglesia, E.: Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J. Catal. 225, 116–127 (2004)

    Article  Google Scholar 

  38. Yoon, S., Kang, I., Bae, J.: Effects of ethylene on carbon formation in diesel autothermal reforming. Int. J. Hydrog. Energy 33, 4780–4788 (2008)

    Article  Google Scholar 

  39. Yoon, S., Kang, I., Bae, J.: Suppression of ethylene-induced carbon deposition in diesel autothermal reforming. Int. J. Hydrog. Energy 34, 1844–1851 (2009a)

    Article  Google Scholar 

  40. Yoon, S., Bae, J., Kim, S., Yoo, Y.-S.: Self-sustained operation of a kWe-class kerosene-reforming processor for solid oxide fuel cells. J. Power Sources 192, 360–366 (2009b)

    Article  Google Scholar 

  41. Yoon, S., Bae, J., Lee, S., Pham, T.V., Katikaneni, S.P.: A diesel fuel processor for stable operation of solid oxide fuel cells system: II. Integrated diesel fuel processor for the operation of solid oxide fuel cells. Int. J. Hydrog. Energy 37, 9228–9236 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Pasel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasel, J. (2015). Technische Entwicklung, Bau und Test von Brenngaserzeugungskomponenten. In: Peters, R. (eds) Brennstoffzellensysteme in der Luftfahrt. VDI-Buch. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46798-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46798-5_5

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46797-8

  • Online ISBN: 978-3-662-46798-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics