Forward Modelling in R

  • Vojtěch Janoušek
  • Jean-François Moyen
  • Hervé Martin
  • Vojtěch Erban
  • Colin Farrow
Chapter
Part of the Springer Geochemistry book series (SPRIGEO)

Abstract

This chapter contains five solved exercises on forward modelling of the behaviour of major elements using R (see Chap. 6 for principles). These include: fractional crystallization of a single mineral and of a more complex cumulate assemblage, partial melting of a mantle peridotite and origin of basaltic magmas, and calculation of a bulk rock composition given the proportions and chemistries of its constituent minerals.

Keywords

TiO2 Crystallization Geochemistry Fractionation Petrol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caron J-M, Gauthier A, Schaaf A, Ulysse J, Wozniak J (1992) Comprendre et enseigner la Planète Terre. Ophrys, ParisGoogle Scholar
  2. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543Google Scholar
  3. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99Google Scholar
  4. Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52:1243–1263Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jean-François Moyen
    • 2
  • Hervé Martin
    • 3
  • Vojtěch Erban
    • 1
  • Colin Farrow
    • 4
  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations