Radiogenic Isotopes

Part of the Springer Geochemistry book series (SPRIGEO)


The aim of this chapter is to explain basic numerical (R-language) approaches in interpreting radiogenic isotope data in igneous geochemistry, with particular emphasis on Sr–Nd–Hf–Os isotopic systems. The text is concerned with calculation of initial ratios, ages ε and γ values, single- and two-stage model ages and fitting of isochrons. Practical exercises illustrating the principles on real datasets are also included. Lastly, the SrNd plugin is introduced that takes care of such recalculations in the GCDkit system.


Radiogenic Isotope 144Nd Ratio Initial Isotopic Ratio Central Bohemian Plutonic Complex Radiogenic Isotope Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allègre CJ (2008) Isotope geology. Cambridge University Press, CambridgeGoogle Scholar
  2. Arndt NT, Goldstein SL (1987) Use and abuse of crust-formation ages. Geology 15:893–895Google Scholar
  3. Audi G, Wapstra AH, Thibault C (2003) The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl Phys A 729:337–676Google Scholar
  4. Berglund M, Wieser M E (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure App Chem 83:397–410Google Scholar
  5. Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57Google Scholar
  6. DePaolo DJ (1988) Neodymium isotope geochemistry. Springer, BerlinGoogle Scholar
  7. Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, CambridgeGoogle Scholar
  8. Faure G (1986) Principles of isotope geology. John Wiley & Sons, ChichesterGoogle Scholar
  9. Faure G, Mensing TM (2004) Isotopes: principles and applications. Wiley, New JerseyGoogle Scholar
  10. Geyh MA, Schleicher H (1990) Absolute age determination. Springer, BerlinGoogle Scholar
  11. Ickert RB (2013) Algorithms for estimating uncertainties in initial radiogenic isotope ratios and model ages. Chem Geol 340:131–138Google Scholar
  12. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155Google Scholar
  13. Janoušek V, Rogers G, Bowes DR (1995) Sr–Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534Google Scholar
  14. Konopásek J, Košler J, Sláma J, Janoušek V (2014) Timing and sources of pre-collisional Neoproterozoic sedimentation along the SW margin of the Congo Craton (Kaoko Belt, NW Namibia). Gondwana Res 26:386–401Google Scholar
  15. Kullerud L (1991) On the calculation of isochrons. Chem Geol (Isot Geosci Sect) 87:115–124Google Scholar
  16. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138Google Scholar
  17. Ludwig KR (2003) Isoplot/Ex version 3.00. A geochronological toolkit for Microsoft Excel, User’s Manual. Berkeley Geochronology Center Special Publications, vol 4, pp 1–70Google Scholar
  18. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution line of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357Google Scholar
  19. McCulloch MT, Wasserburg GJ (1978) Sm–Nd and Rb–Sr chronology of the continental crust formation. Science 200:1003–1011Google Scholar
  20. Michard A, Gurriet P, Soudant M, Albarède F (1985) Nd isotopes in French Phanerozoic shales: external vs. internal aspects of crustal evolution. Geochim Cosmochim Acta 49:601–610Google Scholar
  21. Provost A (1990) An improved diagram for isochron data. Chem Geol (Isot Geosci Sect) 80:85–99Google Scholar
  22. Rotenberg E, Davis DW, Amelin Y, Ghosh S, Bergquist BA (2012) Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochim Cosmochim Acta 85:41–57Google Scholar
  23. Selby D, Creaser RA, Stein HJ, Markey RJ, Hannah JL (2007) Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochim Cosmochim Acta 71:1999–2013Google Scholar
  24. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324Google Scholar
  25. Steiger RH, Jäger E (1977) Subcommission on Geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  26. Walker RJ, Horan MF, Morgan JW, Becker H, Grossman JN, Rubin AE (2002) Comparative 187Re–187Os systematics of chondrites: implications regarding early solar system processes. Geochim Cosmochim Acta 66:4187–4201Google Scholar
  27. Wasserburg GJ, Jacobsen SB, DePaolo DJ, McCulloch MT, Wen T (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim Cosmochim Acta 45:2311–2324Google Scholar
  28. York D (1969) Least-squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations