Specialized Plots

  • Vojtěch Janoušek
  • Jean-François Moyen
  • Hervé Martin
  • Vojtěch Erban
  • Colin Farrow
Chapter

Abstract

This chapter presents several less known (or newly designed) types of geochemical plots that are implemented in GCDkit. It does not aim at being systematic and comprehensive; instead it focuses on arguably the most useful or interesting among them that could be suitable for common applications in igneous geochemistry. These include log–log binary plots (for discussing ratios), spiderplots colour coded according some independent variables (such as silica), double-normalized spiderplots (stripping effects of fractional crystallization from a source-related variation produced by partial melting), spider boxplots and spider box and percentile plots (good to deal with large and/or noisy trace-element data sets), contour plots (serving to spot maxima in data distributions), anomaly plots (appropriate, for instance, for mineral exploration) and stripplots/strip boxplots (illustrating the variability in small datasets).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagas L, Anderson JAC, Bierlein FP (2009) Palaeoproterozoic evolution of the Killi Killi Formation and orogenic gold mineralization in the Granites-Tanami Orogen, Western Australia. Ore Geol Rev 35:47–67Google Scholar
  2. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  3. Esty WW, Banfield JD (2003) The box-percentile plot. J Stat Softw 8:1–14Google Scholar
  4. Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans Roy Soc Edinb, Earth Sci 95:141–159Google Scholar
  5. Janoušek V, Aichler J, Hanžl P, Gerdes A, Erban V, Pecina V, Žáček V, Pudilová M, Hrdličková K, Mixa P, Žáčková E (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: a multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic). Int J Earth Sci 103:455–483Google Scholar
  6. Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. Geophysical Monograph Series, vol 166. American Geophysical Union, pp 63–86Google Scholar
  7. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6:Q07006Google Scholar
  8. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81Google Scholar
  9. Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206Google Scholar
  10. Thompson RN, Morrison MA, Dickin AP, Hendry GL (1983) Continental flood basalts… Arachnids rule OK? In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle Xenoliths. Shiva, Nantwich, pp 158–185Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jean-François Moyen
    • 2
  • Hervé Martin
    • 3
  • Vojtěch Erban
    • 1
  • Colin Farrow
    • 4
  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations