Classical Plots

  • Vojtěch Janoušek
  • Jean-François Moyen
  • Hervé Martin
  • Vojtěch Erban
  • Colin Farrow
Chapter

Abstract

In this chapter, plain R recipes are presented to produce the most common graphs used in igneous geochemistry, such as binary plots (simple and multiple, e.g. Harker plots), ternary plots or spiderplots. Practical exercises illustrating the general principles are also included. Special attention is given to dealing with spurious correlations in binary plots (closure effect). The fundamentals and implementation of classification and geotectonic diagrams in GCDkit are also mentioned, as are the relevant commands for drawing basic plot types (binary, ternary, spider and multiple) and their subsequent modification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison J (1986) The statistical analysis of compositional data. Methuen, New YorkGoogle Scholar
  2. Arculus RJ (1987) The significance of source versus process in the tectonic controls of magma genesis. J Volcanol Geotherm Res 32:1–12Google Scholar
  3. Barbarin B (1990) Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238Google Scholar
  4. Bonin B (1986) Ring complexes and anorogenic magmatism. Elsevier, AmsterdamGoogle Scholar
  5. Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J 25:261–270Google Scholar
  6. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  7. Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65:4185–4193Google Scholar
  8. Clemens JD (2012) Granitic magmatism, from source to emplacement: a personal view. Applied Earth Science (Trans Inst Min Metall B) 121:107–136Google Scholar
  9. De La Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2–diagram and major element analyses—its relationships with current nomenclature. Chem Geol 29:183–210Google Scholar
  10. Dupré B, Schiano P, Polve M, Joron JL (1994) Variability; a new parameter which emphasizes the limits of extended rare earth diagrams. Bull Soc Géol France 165:3–13Google Scholar
  11. Förster H-J, Tischendorf G, Trumbull RB (1997) An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40:261–293Google Scholar
  12. Harker A (1909) The natural history of igneous rocks. Methuen & Co., LondonGoogle Scholar
  13. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314Google Scholar
  14. Liégeois J-P, Navez J, Hertogen J, Black R (1998) Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. Lithos 45:1–28Google Scholar
  15. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253Google Scholar
  16. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem Geol 56:207–218Google Scholar
  17. Moyen JF, Champion D, Smithies RH (2009) The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth Environ Sci Trans R Soc Edinb 100:35–50Google Scholar
  18. Mullen ED (1983) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet Sci Lett 62:53–62Google Scholar
  19. Pearce JA (1996a) A user’s guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, vol 12, pp 79–113Google Scholar
  20. Pearce JA (1996b) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  21. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  22. Pearce JA (2014) Immobile element fingerprinting of ophiolites. Elements 10:101–108Google Scholar
  23. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300Google Scholar
  24. Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47Google Scholar
  25. Pearce JA, Stern RJ (2006) Origin of back-arc basin magmas: trace element and isotope perspectives. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc spreading systems: geological, biological, chemical, and physical interactions. Geophysical Monograph Series, vol 166. American Geophysical Union, pp 63–86Google Scholar
  26. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983Google Scholar
  27. Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. John Wiley & Sons, ChichesterGoogle Scholar
  28. Rock NMS (1988) Numerical geology. A source guide, glossary and selective bibliography to geological uses of computers and statistics. Lecture Notes in Earth Sciences, vol 18. Springer, BerlinGoogle Scholar
  29. Rollinson HR (1992) Another look at the constant sum problem in geochemistry. Mineral Mag 56:469–475Google Scholar
  30. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, LondonGoogle Scholar
  31. Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118Google Scholar
  32. Skala W (1979) Some effects of the constant-sum problem in geochemistry. Chem Geol 27:1–9Google Scholar
  33. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the ocean basins. Geological Society of London Special Publications, vol 42, pp 313–345Google Scholar
  34. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  35. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265Google Scholar
  36. van den Boogaart KG, Tolosana-Delgado R (2008) “compositions”: a unified R package to analyze compositional data. Comput and Geosci 34:320–338Google Scholar
  37. van den Bogaard P, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer, BerlinGoogle Scholar
  38. Verma SP, Rivera-Gómez MA (2013) New computer program TecD for tectonomagmatic discrimination from discriminant function diagrams for basic and ultrabasic magmas and its application to ancient rocks. J Iber Geol 39:167–179Google Scholar
  39. Verma SP, Pandarinath K, Verma SK, Agrawal S (2013) Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168–169:113–123Google Scholar
  40. Vermeesch P (2006) Tectonic discrimination diagrams revisited. Geochem Geophys Geosyst 7:Q06017Google Scholar
  41. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jean-François Moyen
    • 2
  • Hervé Martin
    • 3
  • Vojtěch Erban
    • 1
  • Colin Farrow
    • 4
  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations