Data Manipulation and Simple Calculations

Part of the Springer Geochemistry book series (SPRIGEO)


This chapter will demonstrate the practical use of the R language (for overview of its syntax, see Appendix A) and GCDkit (Appendix B) to solve common problems in igneous geochemistry. We shall follow the basic procedure from loading the data into the system, through their subsetting, calculation of basic indexes (such as mg# or A/CNK values) or cationic parameters (after Niggli, Debon & Le Fort and De la Roche), to normative recalculations (e.g., CIPW norm). Briefly mentioned are also statistical applications of the R language, such as obtaining simple descriptive statistics and use of factors-based grouping to deal with complex geochemical data sets.


Igneous Rock Data Frame TiO2 Al2O3 Peraluminous Granite Igneous Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchelor RA, Bowden P (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55Google Scholar
  2. Chambers JM, Hastie TJ (1992) Statistical models in S. Chapman & Hall, LondonGoogle Scholar
  3. Clarke DB (1981) The mineralogy of peraluminous granites; a review. Canad Mineral 19:3–17Google Scholar
  4. Cross W, Iddings JP, Pirsson LV, Washington HS (1902) A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. J Geol 10:555–690Google Scholar
  5. De La Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2–diagram and major element analyses—its relationships with current nomenclature. Chem Geol 29:183–210Google Scholar
  6. Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinb, Earth Sci 73:135–149Google Scholar
  7. Debon F, Le Fort P (1988) A cationic classification of common plutonic rocks and their magmatic associations: principles, method, applications. Bull Minéral 111:493–510Google Scholar
  8. Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969Google Scholar
  9. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048Google Scholar
  10. Hutchison CS (1974) Laboratory handbook of petrographic techniques. John Wiley & Sons, New YorkGoogle Scholar
  11. Hutchison CS (1975) The norm, its variations, their calculation and relationships. Schweiz mineral petrogr Mitt 55:243–256Google Scholar
  12. Janoušek V (2001) Norman, a QuickBasic programme for petrochemical re-calculation of whole-rock major-element analyses on IBM PC. J Czech Geol Soc 46:9–13Google Scholar
  13. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543Google Scholar
  14. Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99Google Scholar
  15. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750Google Scholar
  16. Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, CambridgeGoogle Scholar
  17. Maindonald J, Braun J (2003) Data analysis and graphics using R. Cambridge University Press, CambridgeGoogle Scholar
  18. Mielke P, Winkler HGF (1979) Eine bessere Berechnung der Mesonorm für granitische Gesteine. Neu Jb Mineral, Mh 471–480Google Scholar
  19. Miller CF (1985) Are strongly peraluminous magmas derived from pelitic sources? J Geol 93:673–689Google Scholar
  20. Niggli P (1948) Gesteine und Minerallagerstätten. Birkhäuser, BaselGoogle Scholar
  21. Reimann C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis explained: applied environmental statistics with R. John Wiley & Sons, ChichesterGoogle Scholar
  22. Rock NMS (1988) Numerical geology. A source guide, glossary and selective bibliography to geological uses of computers and statistics. Lecture Notes in Earth Sciences, vol 18. Springer, BerlinGoogle Scholar
  23. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. John Wiley & Sons, New YorkGoogle Scholar
  24. van den Bogaard P, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer, BerlinGoogle Scholar
  25. Venables WN, Ripley BD (1999) Modern applied statistics with S-Plus. Springer, BerlinGoogle Scholar
  26. Verma SP, Torres-Alvarado IS, Sotelo-Rodriguez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Comput and Geosci 28:711–715Google Scholar
  27. Verma SP, Torres-Alvarado IS, Velasco-Tapia F (2003) A revised CIPW norm. Schweiz mineral petrogr Mitt 83:197–216Google Scholar
  28. Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans Roy Soc Edinb, Earth Sci 89:113–119Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations