Choosing an Appropriate Model

  • Vojtěch Janoušek
  • Jean-François Moyen
  • Hervé Martin
  • Vojtěch Erban
  • Colin Farrow
Chapter

Abstract

This chapter presents a range of geological and petrological evidence that can be used to decide on the process shaping the geochemistry of a rock suite. In turn, we discuss the evidence for crystallization, melting and mixing (and assimilation), and we show which of the laws discussed in Chaps. 6 and 11 are more appropriate for each situation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Arndt NT (1994) Archean komatiites. In: Condie KC (ed) Archean crustal evolution. Developments in Precambrian Geology, vol 11. Elsevier, Amsterdam, pp 11–44Google Scholar
  2. Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177Google Scholar
  3. Bateman R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth Sci Rev 39:91–106Google Scholar
  4. Brown M (2004) The mechanism of melt extraction from lower continental crust of orogens. Trans Roy Soc Edinb, Earth Sci 95:35–48Google Scholar
  5. Brown M (2007) Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. J Geol Soc London 164:709–730Google Scholar
  6. Castro A, De la Rosa JD (1994) Nomarski study of zoned plagioclases from granitoids of the Seville Range Batholith, SW Spain. Petrogenetic implications. Eur J Mineral 6:647–656Google Scholar
  7. Clarke DB, Henry AS, White MA (1998) Exploding xenoliths and the absence of ‘elephants’ graveyards’ in granite batholiths. J Struct Geol 20:1325–1343Google Scholar
  8. Clarke DB, Paterson SR, Vernon RH (2007) Contaminated granites: preface. Canad Mineral 45:1–3Google Scholar
  9. Didier J, Barbarin B (1991) Enclaves and granite petrology. Elsevier, AmsterdamGoogle Scholar
  10. Fourcade S, Martin H, de Brémond d’Ars J (1992) Chemical exchange in migmatites during cooling. Lithos 28:43–53Google Scholar
  11. Ginibre C, Wörner G, Kronz A (2002) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib Mineral Petrol 143:300–315Google Scholar
  12. Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35:319–322Google Scholar
  13. Hallot E, Davy P, de Brémond d’Ars J, Auvray B, Martin H, van Damme H (1996) Non-Newtonian effects during injection in partially crystallised magmas. J Volcanol Geotherm Res 71:31–44Google Scholar
  14. Harker A (1909) A natural history of igneous rocks. Methuen and Co., LondonGoogle Scholar
  15. Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). Lithos 102:508–537Google Scholar
  16. Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 431–444Google Scholar
  17. Hibbard MJ (1995) Mixed magma rocks. In: Petrography to petrogenesis. Prentice Hall, New Jersey, pp 242–260Google Scholar
  18. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489Google Scholar
  19. Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans Roy Soc Edinb, Earth Sci 91:15–26Google Scholar
  20. Janoušek V, Braithwaite CJR, Bowes D, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99Google Scholar
  21. Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: implications for geothermobarometry and pressure–temperature paths. Geology 26:1111–1114Google Scholar
  22. Lackey JS, Valley JW, Hinke HJ (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada Batholith. Contrib Mineral Petrol 151:20–44Google Scholar
  23. Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin Hyman, BostonGoogle Scholar
  24. Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, AmsterdamGoogle Scholar
  25. Morgavi D, Perugini D, de Campos CP, Ertel-Ingrisch W, Dingwell DB (2013) Morphochemistry of patterns produced by mixing of rhyolitic and basaltic melts. J Volcanol Geotherm Res 253:87–96Google Scholar
  26. Pagel M, Barbin V, Blanc P, Ohnenstetter D (2000) Cathodoluminescence in geosciences. Springer, BerlinGoogle Scholar
  27. Pearson D, Canil D, Shirey S (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson R (ed) The mantle and core. Treatise on Geochemistry, vol 2. Elsevier, Amsterdam, pp 171–275Google Scholar
  28. Perugini D, Poli G (2000) Chaotic dynamics and fractals in magmatic interaction processes: a different approach to the interpretation of mafic microgranular enclaves. Earth Planet Sci Lett 175:93–103Google Scholar
  29. Pitcher WS, Berger AR (1972) The geology of Donegal: a study of granite emplacement and unroofing. Wiley-Interscience, New YorkGoogle Scholar
  30. Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist Special Publication, vol 9. NRC Research Press, OttawaGoogle Scholar
  31. Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616Google Scholar
  32. Stevens G, van Reenen D (1992) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambr Res 55:303–319Google Scholar
  33. Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from ‘primitive’ metasedimentary protoliths. Contrib Mineral Petrol 128:352–370Google Scholar
  34. Taylor J, Nicoli G, Stevens G, Frei D, Moyen JF (2014) The processes that control leucosome compositions in metasedimentary granulites: perspectives from the Southern Marginal Zone migmatites, Limpopo Belt, South Africa. J Metam Geol 32:713–742Google Scholar
  35. Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 277–291Google Scholar
  36. Vernon RH (2007) Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Canad Mineral 45:147–178Google Scholar
  37. Walter M (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson R (ed) The mantle and core. Treatise on Geochemistry, vol 2. Elsevier, Amsterdam, pp 363–394Google Scholar
  38. Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289Google Scholar
  39. Yakymchuk C, Brown M (2014) Consequences of open-system melting in tectonics. J Geol Soc London 171:21–40Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jean-François Moyen
    • 2
  • Hervé Martin
    • 3
  • Vojtěch Erban
    • 1
  • Colin Farrow
    • 4
  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations