Skip to main content

Choosing an Appropriate Model

  • Chapter
  • First Online:
  • 2870 Accesses

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

This chapter presents a range of geological and petrological evidence that can be used to decide on the process shaping the geochemistry of a rock suite. In turn, we discuss the evidence for crystallization, melting and mixing (and assimilation), and we show which of the laws discussed in Chaps. 6 and 11 are more appropriate for each situation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  • Arndt NT (1994) Archean komatiites. In: Condie KC (ed) Archean crustal evolution. Developments in Precambrian Geology, vol 11. Elsevier, Amsterdam, pp 11–44

    Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Google Scholar 

  • Bateman R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth Sci Rev 39:91–106

    Google Scholar 

  • Brown M (2004) The mechanism of melt extraction from lower continental crust of orogens. Trans Roy Soc Edinb, Earth Sci 95:35–48

    Google Scholar 

  • Brown M (2007) Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. J Geol Soc London 164:709–730

    Google Scholar 

  • Castro A, De la Rosa JD (1994) Nomarski study of zoned plagioclases from granitoids of the Seville Range Batholith, SW Spain. Petrogenetic implications. Eur J Mineral 6:647–656

    Google Scholar 

  • Clarke DB, Henry AS, White MA (1998) Exploding xenoliths and the absence of ‘elephants’ graveyards’ in granite batholiths. J Struct Geol 20:1325–1343

    Google Scholar 

  • Clarke DB, Paterson SR, Vernon RH (2007) Contaminated granites: preface. Canad Mineral 45:1–3

    Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology. Elsevier, Amsterdam

    Google Scholar 

  • Fourcade S, Martin H, de Brémond d’Ars J (1992) Chemical exchange in migmatites during cooling. Lithos 28:43–53

    Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2002) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib Mineral Petrol 143:300–315

    Google Scholar 

  • Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35:319–322

    Google Scholar 

  • Hallot E, Davy P, de Brémond d’Ars J, Auvray B, Martin H, van Damme H (1996) Non-Newtonian effects during injection in partially crystallised magmas. J Volcanol Geotherm Res 71:31–44

    Google Scholar 

  • Harker A (1909) A natural history of igneous rocks. Methuen and Co., London

    Google Scholar 

  • Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl Unit (Moldanubian Zone, Bohemian Massif). Lithos 102:508–537

    Google Scholar 

  • Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 431–444

    Google Scholar 

  • Hibbard MJ (1995) Mixed magma rocks. In: Petrography to petrogenesis. Prentice Hall, New Jersey, pp 242–260

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans Roy Soc Edinb, Earth Sci 91:15–26

    Google Scholar 

  • Janoušek V, Braithwaite CJR, Bowes D, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99

    Google Scholar 

  • Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: implications for geothermobarometry and pressure–temperature paths. Geology 26:1111–1114

    Google Scholar 

  • Lackey JS, Valley JW, Hinke HJ (2006) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing plutons of the Sierra Nevada Batholith. Contrib Mineral Petrol 151:20–44

    Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Unwin Hyman, Boston

    Google Scholar 

  • Mehnert KR (1968) Migmatites and the origin of granitic rocks. Elsevier, Amsterdam

    Google Scholar 

  • Morgavi D, Perugini D, de Campos CP, Ertel-Ingrisch W, Dingwell DB (2013) Morphochemistry of patterns produced by mixing of rhyolitic and basaltic melts. J Volcanol Geotherm Res 253:87–96

    Google Scholar 

  • Pagel M, Barbin V, Blanc P, Ohnenstetter D (2000) Cathodoluminescence in geosciences. Springer, Berlin

    Google Scholar 

  • Pearson D, Canil D, Shirey S (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson R (ed) The mantle and core. Treatise on Geochemistry, vol 2. Elsevier, Amsterdam, pp 171–275

    Google Scholar 

  • Perugini D, Poli G (2000) Chaotic dynamics and fractals in magmatic interaction processes: a different approach to the interpretation of mafic microgranular enclaves. Earth Planet Sci Lett 175:93–103

    Google Scholar 

  • Pitcher WS, Berger AR (1972) The geology of Donegal: a study of granite emplacement and unroofing. Wiley-Interscience, New York

    Google Scholar 

  • Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist Special Publication, vol 9. NRC Research Press, Ottawa

    Google Scholar 

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616

    Google Scholar 

  • Stevens G, van Reenen D (1992) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambr Res 55:303–319

    Google Scholar 

  • Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from ‘primitive’ metasedimentary protoliths. Contrib Mineral Petrol 128:352–370

    Google Scholar 

  • Taylor J, Nicoli G, Stevens G, Frei D, Moyen JF (2014) The processes that control leucosome compositions in metasedimentary granulites: perspectives from the Southern Marginal Zone migmatites, Limpopo Belt, South Africa. J Metam Geol 32:713–742

    Google Scholar 

  • Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 277–291

    Google Scholar 

  • Vernon RH (2007) Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Canad Mineral 45:147–178

    Google Scholar 

  • Walter M (2003) Melt extraction and compositional variability in mantle lithosphere. In: Carlson R (ed) The mantle and core. Treatise on Geochemistry, vol 2. Elsevier, Amsterdam, pp 363–394

    Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289

    Google Scholar 

  • Yakymchuk C, Brown M (2014) Consequences of open-system melting in tectonics. J Geol Soc London 171:21–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Janoušek .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janoušek, V., Moyen, JF., Martin, H., Erban, V., Farrow, C. (2016). Choosing an Appropriate Model. In: Geochemical Modelling of Igneous Processes – Principles And Recipes in R Language. Springer Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46792-3_20

Download citation

Publish with us

Policies and ethics