• Vojtěch Janoušek
  • Jean-François Moyen
  • Hervé Martin
  • Vojtěch Erban
  • Colin Farrow
Part of the Springer Geochemistry book series (SPRIGEO)


In the beginning, this chapter briefly summarizes the historical development of ideas regarding the causes of chemical variations in magmatic suites, from mediaeval times to the present. It stresses the importance of current revolution driven by improving analytical techniques, providing large amounts of increasingly precise major- and trace-element analyses, as well as data on a growing number of isotopic systems. Later, it provides an overview of available PC programs for interpretation of whole-rock geochemical data from igneous rocks. Finally it outlines the importance of open-source software and introduces the R language and the Geochemical Data Toolkit (GCDkit), written in R. Both are used extensively throughout this book (for their fundamentals, see Appendices A and B).


Inductively Couple Plasma Mass Spectrometry Igneous Rock Geochemical Data Petrogenetic Process Igneous Suite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, CambridgeGoogle Scholar
  2. Albarède F, Bottinga Y (1972) Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochim Cosmochim Acta 36:141–156Google Scholar
  3. Becker RA, Chambers JM, Wilks AR (1988) The new S language. Chapman & Hall, LondonGoogle Scholar
  4. Bowen NL (1912) The order of crystallization in igneous rocks. J Geol 20:457–468Google Scholar
  5. Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, PrincetonGoogle Scholar
  6. Carr M (2014) IgPet, a graphics and modeling program for igneous petrology. Terra Softa, Somerset, New Jersey, U.S.A.Google Scholar
  7. Castaing R (1951) Application des sondes électroniques à une méthode d’analyse ponctuelle chimique et cristallographique. Publication ONERA, vol 55. University of Paris, Paris (PhD Thesis)Google Scholar
  8. Clarke D, Mengel F, Coish RA, Kosinowski MHF (1994) NewPet for DOS, version 94.01.07. Department of Earth Sciences, Memorial University of Newfoundland, CanadaGoogle Scholar
  9. Cordier PLA (1827) Essai sur la température de l’intérieur de la Terre. Mémoires de l’Académie des sciences de l’Institut de France 7:473–556Google Scholar
  10. Ersoy Y (2013) PETROMODELER (Petrological Modeler): a Microsoft® Excel© spreadsheet program for modelling melting, mixing, crystallization and assimilation processes in magmatic systems. Turkish J Earth Sci 22:115–125Google Scholar
  11. Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086Google Scholar
  12. Greenland LP (1970) An equation of trace element distribution during magmatic crystallization. Amer Miner 55:455–465Google Scholar
  13. Gutenberg B (1914) Über Erdbenwellen VIIA. Beobachtungen an Registrierungen von Fernbeben in Göttingen und Folgerungen über die Konstitution des Erdkörpers. Nachr d Kön Ges d Wiss Göttingen, math-phys Kl 125–176Google Scholar
  14. Harker A (1909) The natural history of igneous rocks. Methuen & Co., LondonGoogle Scholar
  15. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–344Google Scholar
  16. Janoušek V (2001) Norman, a QuickBasic programme for petrochemical re-calculation of whole-rock major-element analyses on IBM PC. J Czech Geol Soc 46:9–13Google Scholar
  17. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259Google Scholar
  18. Janoušek V, Farrow CM, Erban V, Trubač J (2011) Brand new Geochemical Data Toolkit (GCDkit 3.0)—is it worth upgrading and browsing documentation? (Yes!). Geol výzk Mor Slez 18:26–30Google Scholar
  19. Jeffreys H (1926) The rigidity of the Earth’s central core. Monthly Notices of the Royal Astronomical Society, Geophysical Supplement 1:371–383Google Scholar
  20. Johnson CM, McLennan SM, McSween HY, Summons RE (2013) Smaller, better, more: five decades of advances in geochemistry. In: Bickford ME (ed) The web of geological sciences: advances, impacts, and interactions. Geological Society of America Special Papers, vol 500, pp 259–302Google Scholar
  21. Kanen (2004) WinRock (a manual). MinServ, ISBN 0 9756723 8 XGoogle Scholar
  22. Keskin M (2013) AFC-Modeler: a Microsoft® Excel© workbook program for modelling assimilation combined with fractional crystallization (AFC) process in magmatic systems by using equations of DePaolo (1981). Turkish J Earth Sci 22:304–319Google Scholar
  23. Kircher A (1664) Mundus subterraneus, Tomus 1–2. Apud Joannem Janssonium & Elyseum Weyerstraten, AmsterdamGoogle Scholar
  24. Melín M, Kunst M (1992) MINCALC Development Kit 2.1. Geological Institute of the Czech Academy of Sciences, PragueGoogle Scholar
  25. Moro AL (1740) De crostacei e degli altri marini corpi che si truovano su’ monti. Appresso Stefano Monti, VeneziaGoogle Scholar
  26. Neumann H, Mead J, Vitaliano CJ (1954) Trace element variation during fractional crystallization as calculated from the distribution law. Geochim Cosmochim Acta 6:90–99Google Scholar
  27. Oldham RD (1906) The constitution of the interior of the Earth, as revealed by earthquakes. Q J Geol Soc Lond 62:456–475Google Scholar
  28. Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosyst 6: Q07011Google Scholar
  29. Potts PJ (1987) A Handbook of silicate rock analysis. Blackie & Son Ltd., Glasgow and LondonGoogle Scholar
  30. Rayleigh L (1896) Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philosophical Magazine Series 5 42:493–498Google Scholar
  31. Richard LR (1995) MinPet: mineralogical and petrological data processing system, version 2.02. MinPet Geological Software, Québec, CanadaGoogle Scholar
  32. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, LondonGoogle Scholar
  33. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243Google Scholar
  34. Shaw DM (2006) Trace elements in magmas. A theoretical treatment. Cambridge University Press, CambridgeGoogle Scholar
  35. Sidder GB (1994) Petro.calc.plot, Microsoft Excel macros to aid petrologic interpretation. Comput and Geosci 20:1041–1061Google Scholar
  36. Su YJ, Langmuir CH, Asimow PD (2003) PetroPlot: A plotting and data management tool set for Microsoft Excel. Geochem Geophys Geosyst 4:1030, doi: 10.1029/2002GC000323
  37. Sylvester P (ed) (2001) Laser ablation-ICPMS in the Earth sciences: principles and applications. Mineralogical Association of Canada Short Course Series, vol 29Google Scholar
  38. Wang X, Ma W, Gao S, Ke L (2008) GCDPlot: An extensible Microsoft Excel VBA program for geochemical discrimination diagrams. Comput and Geosci 34:1964–1969Google Scholar
  39. Zhou J, Li X (2006) GeoPlot: an Excel VBA program for geochemical data plotting. Comput and Geosci 32:554–560Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vojtěch Janoušek
    • 1
  • Jean-François Moyen
    • 2
  • Hervé Martin
    • 3
  • Vojtěch Erban
    • 1
  • Colin Farrow
    • 4
  1. 1.Czech Geological SurveyPragueCzech Republic
  2. 2.Université Jean-MonnetSaint-EtienneFrance
  3. 3.Université Blaise-PascalClermont-FerrandFrance
  4. 4.GlasgowScotland

Personalised recommendations