Skip to main content

Basic Concepts of Quantum Mechanics

  • Chapter
Modern Optical Spectroscopy
  • 3737 Accesses

Abstract

In this chapter we discuss the basic principles of quantum mechanics that underlie optical spectroscopy. We consider wavefunctions, operators and expectation values, atomic and molecular orbitals, harmonic and Morse oscillators, spin wavefunctions for singlet and triplet states, time-dependent perturbation theory, and the dynamics of transitions between states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirac, P.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1930)

    Google Scholar 

  2. Pauling, L., Wilson, E.B.: Introduction to Quantum Mechanics. McGraw-Hill, New York (1935)

    Google Scholar 

  3. van der Waerden, B.L. (ed.): Sources of Quantum Mechanics. Dover, New York (1968)

    Google Scholar 

  4. Atkins, P.W.: Molecular Quantum Mechanics, 2nd edn. Oxford Univ. Press, Oxford (1983)

    Google Scholar 

  5. Levine, I.N.: Quantum Chemistry. Prentice-Hall, Englewood Cliffs, NJ (2000)

    Google Scholar 

  6. Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Macmillan, New York (1982)

    Google Scholar 

  7. Jensen, F.: Introduction to Computational Chemistry. Wiley, New York (1999)

    Google Scholar 

  8. Simons, J., Nichols, J.: Quantum Mechanics in Chemistry. Oxford University Press, New York (1997)

    Google Scholar 

  9. Engel, T.: Quantum Chemistry and Spectroscopy. Benjamin Cummings, San Francisco (2006)

    Google Scholar 

  10. Atkins, P.W.: Quanta: A Handbook of Concepts, p. 434. Oxford University Press, Oxford (1991)

    Google Scholar 

  11. Born, M.: The quantum mechanics of the impact process. Z. Phys. 37, 863–867 (1926)

    Article  Google Scholar 

  12. Reichenbach, H.: Philosophic Foundations of Quantum Mechanics, p. 182. University of California Press, Berkeley & Los Angeles (1944)

    Google Scholar 

  13. Pais, A.: Max Born’s statistical interpretation of quantum mechanics. Science 218, 1193–1198 (1982)

    Article  CAS  PubMed  Google Scholar 

  14. Jammer, M.: The Philosophy of Quantum Mechanics: The Interpretation of Quantum Mechanics in Historical Perspective. Wiley, New York (1974)

    Google Scholar 

  15. Einstein, A.: Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. der Phys. 17, 132–146 (1905)

    Article  CAS  Google Scholar 

  16. de Broglie, L.: Radiations—ondes et quanta. Comptes rendus 177, 507–510 (1923)

    Google Scholar 

  17. Schrödinger, E.: Quantisierung als eigenwertproblem. Ann. der Phys. 79, 489–527 (1926)

    Article  Google Scholar 

  18. Schrödinger, E.: Collected Papers on Wave Mechanics. Blackie & Son, London (1928)

    Google Scholar 

  19. Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York (1966)

    Google Scholar 

  20. Marton, L., Simpson, J.A., Suddeth, J.A.: Electron beam interferometer. Phys. Rev. 90, 490–491 (1953)

    Article  CAS  Google Scholar 

  21. Carnal, O., Mlynek, J.: Young’s double-slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689–2692 (1991)

    Article  PubMed  Google Scholar 

  22. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272, 1131–1136 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. Pople, J.A.: Nobel lecture: quantum chemical models. Rev. Mod. Phys. 71, 1267–1274 (1999)

    Article  CAS  Google Scholar 

  24. Pople, J.A., Beveridge, D.L.: Approximate Molecular Orbital Theory. McGraw-Hill, New York (1970)

    Google Scholar 

  25. Angeli, C.: DALTON, a molecular electronic structure program, Release 2.0 (2005). See http://www.kjemi.uio.no/software/dalton/dalton.html . (2005)

  26. Parr, R.G.: Density-functional theory of atoms and molecules. Clarendon, Oxford (1989)

    Google Scholar 

  27. Ayscough, P.B.: Library of physical chemistry software, vol. 2. Oxford University Press & W. H. Freeman, New York (1990)

    Google Scholar 

  28. Kong, J., White, C.A., Krylov, A., Sherrill, D., Adamson, R.D., et al.: Q-chem 2.0: a high-performance ab initio electronic structure program package. J. Comp. Chem. 21, 1532–1548 (2000)

    Article  CAS  Google Scholar 

  29. Becke, A.D.: Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18A301 (2014)

    Article  PubMed  Google Scholar 

  30. Burke, K., Werschnik, J., Gross, E.K.U.: Time-dependent density functional theory: past, present, and future. J. Chem. Phys. 123, 62206–62209 (2005)

    Article  PubMed  Google Scholar 

  31. McGlynn, S.P., Vanquickenborne, L.C., Kinoshita, M., Carroll, D.G.: Introduction to Applied Quantum Chemistry. Holt, Reinhardt & Winston, New York (1972)

    Google Scholar 

  32. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  33. Dirac, P.M.: The quantum theory of the electron. Part II. Proc. Roy. Soc. A118, 351–361 (1928)

    Article  Google Scholar 

  34. Roothaan, C.C.J.: New developments in molecular orbital theory. Rev. Mod. Phys. 23, 69–89 (1951)

    Article  CAS  Google Scholar 

  35. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    CAS  Google Scholar 

  36. ter Haar, D.: The vibrational levels of an anharmonic oscillator. Phys. Rev. 70, 222–223 (1946)

    Article  Google Scholar 

  37. Callis, P.R.: Molecular orbital theory of the 1Lb and 1La states of indole. J. Chem. Phys. 95, 4230–4240 (1991)

    Article  CAS  Google Scholar 

  38. Slater, L.S., Callis, P.R.: Molecular orbital theory of the 1La and 1Lb states of indole. 2. An ab initio study. J. Phys. Chem. 99, 4230–4240 (1995)

    Article  Google Scholar 

  39. Callis, P.R.: 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Meth. Enzymol. 278, 113–150 (1997)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parson, W.W. (2015). Basic Concepts of Quantum Mechanics. In: Modern Optical Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46777-0_2

Download citation

Publish with us

Policies and ethics