Laser Therapy of Superficial and Deep Capillary Malformation (CM): Principles of Laser Technology

Chapter

Abstract

The difference between laser light and other light sources like intense pulsed light (IPL), LED, and xenon arc lamps is that laser is monochromatic, collimated, and coherent. This means that the tissue interaction is specific and the light distribution is calculable. Generally, one can say in the visible the shorter the wavelength, the more specific the absorption coefficient and, in the near infrared, the longer the wavelength, the more water absorption. Furthermore, the longer the wavelength, the lower the scattering and back scattering; the longer the pulse duration, the more thermal effects. With changing of the biophysical properties of the overlying tissue through compression and/or cooling, one can change the basic absorption of these layers. This allows bedside puncture techniques to make the tissue transparent and bring laser irradiation into deeper tissues. So one has the following application principles:
  1. 1.

    Transcutaneous with/without compression and/or cooling

     
  2. 2.

    Impression, interstitial, and paravasal application

     
  3. 3.

    Intraluminal as endovenous, intra-arterial, and intracystic techniques

     
  4. 4.

    Endoscopic in noncontact, contact, and impression techniques

     

References

  1. 1.
    Berlien HP, Waldschmidt J, Müller G. Laser treatment of cutaneous and deep vessel anomalies. In: Waidelich W, editor. Laser optoelectronics in medicine. Berlin/Heidelberg/New York: Springer; 1988. p. 526–8.CrossRefGoogle Scholar
  2. 2.
    Berlien HP. Laser treatment of vascular malformations. In: Mattassi R, Loose DA, Vaghi M, editors. Hemangiomas and vascular malformations. Milan/Berlin/Heidelberg/New York: Springer; 2015. p. 291–305.Google Scholar
  3. 3.
    Eivazi B, Wiegand S, Teymoortash A, Neff A, Werner JA. Laser treatment of mucosal venous malformations of the upper aerodigestive tract in 50 patients. Lasers Med Sci 2010;25(4):571–6. Epub 2010 Mar 9.Google Scholar
  4. 4.
    Menefee MG, Flessa HC, Glueck HI, Hogg S. Hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu disease): an electron microscopy study of the vascular lesions before and after therapy with hormones. Arch Otolaryngol. 1985;101:246–51.CrossRefGoogle Scholar
  5. 5.
    Philipp CM, Poetke M, Berlien HP. Vascular tumors and malformations of the pelvic and genital region-classification and laser treatment. Med Laser Appl. 2008;24:27–51.CrossRefGoogle Scholar
  6. 6.
    Poetke M, Philipp C, Großewinkelmann A, et al. Die Behandlung von Naevi flammei bei Säuglingen und Kleinkindern mit dem blitzlampengepumpten Farbstofflaser. Monatsschr Kinderheilkd. 2001;32:405–15.Google Scholar
  7. 7.
    Scherer K, Waner M. Nd:YAG lasers (1,064 nm) in the treatment of venous malformations of the face and neck: challenges and benefits. Lasers Med Sci 2007;22(2):119–26. Epub 2007 Feb 22.Google Scholar
  8. 8.
    Urban P, Philipp CM, Poetke M, Berlien HP. Value of colour coded duplex sonography in the assessment of haemangiomas and vascular malformations. Medical Laser Application. 2005;20(4):267–78.CrossRefGoogle Scholar
  9. 9.
    Urban P, Poetke M, Müller U, Philipp C, Berlien H-P. Interstitial Nd:YAG Laser treatment of vascular malformations controlled by color coded duplex sonography (CCDS). Med Laser Appl. 2011;26:85.CrossRefGoogle Scholar
  10. 10.
    Yakes WE. Alcohol embolotherapy of vascular malformation. Sem Interv Radiol. 1989;6:146–61.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Wissenschaft und Forschung, Lasermedizin, Elisabeth KlinikBerlinGermany

Personalised recommendations