Genetic Aspects of Vascular Malformations

  • Francine Blei


The identification of genomic and somatic mutations in patients with vascular anomalies has greatly contributed to our understanding of the pathogenesis of these disorders. Recognition of family pedigrees led to the discovery of causative genes in hereditary hemorrhagic telangiectasia (HHT), mucosal venous malformations, cerebral cavernous malformations (CCMs), capillary malformation-arteriovenous malformation (CM-AVM), glomovenous malformations, PTEN hamartoma syndromes, and many lymphedema-related conditions. The discovery of somatic mutations in capillary malformations (GNAQ) and overgrowth syndromes (AKT1 in Proteus syndrome, PIK3CA in CLOVES, and other overgrowth syndromes) corroborates the theory that somatic mosaicism is causative in these disorders. This chapter will provide the historic background of the discovery of genetic mutations in vascular malformations and discuss the differences between and importance of understanding genomic and somatic mutations.



This author is grateful for the patients with vascular anomalies and colleagues who participate in the care of and research in this field.


  1. 1.
    Chiller KG, Frieden IJ, Arbiser JL. Molecular pathogenesis of vascular anomalies: classification into three categories based upon clinical and biochemical characteristics. Lymphat Res Biol. 2003;1(4):267–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Arbiser JL, Bonner MY, Berrios RL. Hemangiomas, angiosarcomas, and vascular malformations represent the signaling abnormalities of pathogenic angiogenesis. Curr Mol Med. 2009;9(8):929–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Gallione CJ, Pasyk KA, Boon LM, Lennon F, Johnson DW, Helmbold EA, et al. A gene for familial venous malformations maps to chromosome 9p in a second large kindred. J Med Genet. 1995;32(3):197–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet. 2009;18(R1):R65–74.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Natynki M, Kangas J, Miinalainen I, Sormunen R, Pietila R, Soblet J, et al. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet. 2015;24:6374–89.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lo W, Marchuk DA, Ball KL, Juhasz C, Jordan LC, Ewen JB, et al. Updates and future horizons on the understanding, diagnosis, and treatment of Sturge-Weber syndrome brain involvement. Dev Med Child Neurol. 2012;54(3):214–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brouillard P, Boon L, Vikkula M. Genetics of lymphatic anomalies. J Clin Invest. 2014;124(3):898–904.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Griauzde J, Srinivasan A. Imaging of vascular lesions of the head and neck. Radiol Clin North Am. 2015;53(1):197–213.CrossRefPubMedGoogle Scholar
  11. 11.
    Calvo-Garcia MA, Kline-Fath BM, Adams DM, Gupta A, Koch BL, Lim FY, et al. Imaging evaluation of fetal vascular anomalies. Pediatr Radiol. 2015;45(8):1218–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Nozaki T, Matsusako M, Mimura H, Osuga K, Matsui M, Eto H, et al. Imaging of vascular tumors with an emphasis on ISSVA classification. Jpn J Radiol. 2013;31(12):775–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Rasmussen JC, Fife CE, Sevick-Muraca EM. Near-Infrared Fluorescence Lymphatic Imaging in Lymphangiomatosis. Lymphat Res Biol. 2015;13:195–201.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, JB T, Taieb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358(24):2649–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Boon LM, Hammer J, Seront E, Dupont S, Hammer F, Clapuyt P, et al. Rapamycin as Novel Treatment for Refractory-to-Standard-Care Slow-Flow Vascular Malformations. Plast Reconstr Surg. 2015;136(4S Suppl):38.CrossRefPubMedGoogle Scholar
  16. 16.
    Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, Elluru R, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57(6):1018–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, et al. Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies. Pediatrics. 2015;136(1):e203–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet. 2010;18(4):414–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73(6):1240–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Brouillard P, Boon LM, Revencu N, Berg J, Dompmartin A, Dubois J, et al. Genotypes and phenotypes of 162 families with a glomulin mutation. Mol Syndromol. 2013;4(4):157–64.PubMedPubMedCentralGoogle Scholar
  21. 21.
    McDonald J, Wooderchak-Donahue W, VanSant WC, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci. 2014;127(Pt 4):701–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Luks VL, Kamitaki N, Vivero MP, Uller W, Rab R, Bovee JV, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J Pediatr. 2015;166(4):1048–54. e1–5CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mendola A, Schlogel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastre E, et al. Mutations in the VEGFR3 signaling pathway explain 36 % of familial lymphedema. Mol Syndromol. 2013;4(6):257–66.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cigoli MS, Avemaria F, De Benedetti S, Gesu GP, Accorsi LG, Parmigiani S, et al. PDCD10 gene mutations in multiple cerebral cavernous malformations. PLoS One. 2014;9(10):e110438.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14(5):307–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Erickson RP. Somatic gene mutation and human disease other than cancer: An update. Mutat Res. 2010;705(2):96–106.CrossRefPubMedGoogle Scholar
  28. 28.
    Erickson RP. Recent advances in the study of somatic mosaicism and diseases other than cancer. Curr Opin Genet Dev. 2014;26C:73–8.CrossRefGoogle Scholar
  29. 29.
    Frank SA. Somatic mosaicism and disease. Curr Biol. 2014;24(12):R577–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Spinner NB, Conlin LK. Mosaicism and clinical genetics. Am J Med Genet C Semin Med Genet. 2014;166C(4):397–405.CrossRefPubMedGoogle Scholar
  31. 31.
    Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sapp JC, Turner JT, van de Kamp JM, van Dijk FS, Lowry RB, Biesecker LG. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A. 2007;143A(24):2944–58.CrossRefPubMedGoogle Scholar
  33. 33.
    Keppler-Noreuil KM, Rios JJ, Parker VE, Semple RK, Lindhurst MJ, Sapp JC, et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2015;167A(2):287–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Alomari AI. Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18 cases of CLOVES syndrome. Clin Dysmorphol. 2009;18(1):1–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):1108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mirzaa GM, Conway RL, Gripp KW, Lerman-Sagie T, Siegel DH, deVries LS, et al. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A. 2012;158A(2):269–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Mirzaa GM, Riviere JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet. 2013;163C(2):122–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29(7):959–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev. 2005;15(3):265–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Eng C. PTEN Hamartoma Tumor Syndrome (PHTS). 2001 [Updated 2014 Jan 23]. In: GeneReviews® [Internet] [Internet]. Seattle. Available from:
  41. 41.
    Orloff MS, Eng C. Genetic and phenotypic heterogeneity in the PTEN hamartoma tumour syndrome. Oncogene. 2008;27(41):5387–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Pilarski R, Burt R, Kohlman W, Pho L, Shannon KM, Swisher E. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.CrossRefPubMedGoogle Scholar
  43. 43.
    Nieuwenhuis MH, Kets CM, Murphy-Ryan M, Yntema HG, Evans DG, Colas C, et al. Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer. 2014;13(1):57–63.CrossRefPubMedGoogle Scholar
  44. 44.
    Tan WH, Baris HN, Burrows PE, Robson CD, Alomari AI, Mulliken JB, et al. The spectrum of vascular anomalies in patients with PTEN mutations: implications for diagnosis and management. J Med Genet. 2007;44(9):594–602.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Maclellan RA, Luks VL, Vivero MP, Mulliken JB, Zurakowski D, Padwa BL, et al. PIK3CA activating mutations in facial infiltrating lipomatosis. Plast Reconstr Surg. 2014;133(1):12e–9e.CrossRefPubMedGoogle Scholar
  46. 46.
    Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet. 2011;43(12):1262–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Caux F, Plauchu H, Chibon F, Faivre L, Fain O, Vabres P, et al. Segmental overgrowth, lipomatosis, arteriovenous malformation and epidermal nevus (SOLAMEN) syndrome is related to mosaic PTEN nullizygosity. Eur J Hum Genet. 2007;15(7):767–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Northwell Health SystemLenox Hill HospitalNew YorkUSA

Personalised recommendations