Indocyanine Green (ICG) Lymphography

Chapter

Abstract

Primary lymphedema is caused by various lymphatic malformations and has a wide variety of etiology. Lymphatic image is important to understand underlying pathophysiology of primary lymphedema. Indocyanine green (ICG) lymphography allows very clear superficial lymph flow visualization in real time, which can be performed less invasively without radiation exposure. With progression of lymphedema, ICG lymphography finding changes from linear pattern to splash, to stardust, and finally to diffuse pattern. Different ICG lymphography pattern represents different lymphatic vessel conditions; lymphatic vessel becomes more sclerotic with progression of ICG lymphography findings. Primary lymphedema can be classified into four patterns based on ICG lymphography findings; proximal dermal backflow (PDB), distal dermal backflow (DDB), less enhancement (LE), and no enhancement (NE) patterns. In PDB and DDB patterns, lymph flow obstruction is a main cause of lymphedema, and lymphatic bypass operation can be a useful therapeutic option for compression-refractory lymphedema. In LE pattern, non-obstructive mechanism such as lymph pump dysfunction is considered a cause of lymphedema, and strict compression therapy is recommended. In NE pattern, whole limb severe hypoplasia or aplasia is suspected, and vascularized lymph node transfer may be better indicated than lymphatic bypass operation. ICG lymphography is useful not only for lymphedema evaluation but also for navigation of lymphatic surgery.

Keywords

Indocyanine green Fluorescent Near-infrared Lymph Lymphedema Surgery 

References

  1. 1.
    Yamamoto T, Narushima M, Doi K, Oshima A, Ogata F, Mihara M, Koshima I, Mundinger GS. Characteristic indocyanine green lymphography findings in lower extremity lymphedema: the generation of a novel lymphedema severity staging system using dermal backflow patterns. Plast Reconstr Surg. 2011;127(5):1979–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Yamamoto T, Matsuda N, Doi K, Oshima A, Yoshimatsu H, Todokoro T, Ogata F, Mihara M, Narushima M, Iida T, Koshima I. The earliest finding of indocyanine green (ICG) lymphography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer treatment: the modified dermal backflow (DB) stage and concept of subclinical lymphedema. Plast Reconstr Surg. 2011;128(4):314e–21e.CrossRefPubMedGoogle Scholar
  3. 3.
    Yamamoto T, Yamamoto N, Doi K, Oshima A, Yoshimatsu H, Todokoro T, Ogata F, Mihara M, Narushima M, Iida T, Koshima I. Indocyanine green (ICG)-enhanced lymphography for upper extremity lymphedema: a novel severity staging system using dermal backflow (DB) patterns. Plast Reconstr Surg. 2011;128(4):941–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Yamamoto T, Iida T, Matsuda N, Kikuchi K, Yoshimatsu H, Mihara M, Narushima M, Koshima I. Indocyanine green (ICG)-enhanced lymphography for evaluation of facial lymphoedema. J Plast Reconstr Aesthet Surg. 2011;64(11):1541–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Yamamoto T, Yamamoto N, Yoshimatsu H, Hayami S, Narushima M, Koshima I. Indocyanine green lymphography for evaluation of genital lymphedema in secondary lower extremity lymphedema patients. J Vasc Surg Venous Lymphat Disord. 2013;1(4):400–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Yamamoto T, Narushima M, Yoshimatsu H, Yamamoto N, Oka A, Seki Y, Todokoro T, Iida T, Koshima I. Indocyanine green velocity: lymph transportation capacity deterioration with progression of lymphedema. Ann Plast Surg. 2013;71(5):59–594.Google Scholar
  7. 7.
    Yamamoto T, Narushima M, Yoshimatsu H, Yamamoto N, Kikuchi K, Todokoro T, Iida T, Koshima I. Dynamic indocyanine green lymphography for breast cancer-related arm lymphedema. Ann Plast Surg. 2014;73(6):706–9. 2013 Jul 25 [Epub ahead of print].CrossRefPubMedGoogle Scholar
  8. 8.
    Yamamoto T, Koshima I. Splash, stardust, or diffuse pattern: differentiation of dermal backflow pattern is important in indocyanine green lymphography. Plast Reconstr Surg. 2014;133(6):e887–8.CrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Yamamoto N, Azuma S, Yoshimatsu H, Seki Y, Narushima M, Koshima I. Near-infrared illumination system-integrated microscope for supermicrosurgical lymphaticovenular anastomosis. Microsurgery. 2014;34(1):23–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamamoto T, Yoshimatsu H, Koshima I. Navigation lymphatic supermicrosurgery for iatrogenic lymphorrhea: supermicrosurgical lymphaticolymphatic anastomosis and lymphaticovenular anastomosis under indocyanine green lymphography navigation. J Plast Reconstr Aesthet Surg. 2014;67(11):1573–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Yamamoto T, Yamamoto N, Numahata T, Yokoyama A, Tashiro K, Yoshimatsu H, Narushima M, Kohima I. Navigation lymphatic supermicrosurgery for the treatment of cancer-related peripheral lymphedema. Vasc Endovascular Surg. 2014;48(2):139–43.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamamoto T, Narushima M, Kikuchi K, Yoshimatsu H, Todokoro T, Mihara M, Koshima I. Lambda-shaped anastomosis with intravascular stenting method for safe and effective lymphaticovenular anastomosis. Plast Reconstr Surg. 2011;127(5):1987–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamamoto T, Narushima M, Yoshimatsu H, Seki Y, Yamamoto N, Oka A, Hara H, Koshima I. Minimally invasive lymphatic supermicrosurgery (MILS): indocyanine green lymphography-guided simultaneous multi-site lymphaticovenular anastomoses via millimeter skin incisions. Ann Plast Surg. 2014;72(1):67–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Yamamoto T, Yamamoto N, Narushima M, et al. Lymphaticovenular anastomosis with guidance of ICG lymphography. J Jpn Coll Angiol. 2012;52:327–31.CrossRefGoogle Scholar
  15. 15.
    Yamamoto T, Matsuda N, Todokoro T, Yoshimatsu H, Narushima M, Mihara M, Uchida G, Koshima I. Lower extremity lymphedema index: a simple method for severity evaluation of lower extremity lymphedema. Ann Plast Surg. 2011;67(6):637–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamamoto T, Yamamoto N, Hara H, Mihara M, Narushima M, Koshima I. Upper extremity lymphedema (UEL) index: a simple method for severity evaluation of upper extremity lymphedema. Ann Plast Surg. 2013;70(1):47–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Yamamoto T, Koshima I. Subclinical lymphedema: understanding is the clue to decision making. Plast Reconstr Surg. 2013;132(3):472e–3e.CrossRefPubMedGoogle Scholar
  18. 18.
    Yamamoto T, Yamamoto N, Yamashita M, Furuya M, Hayashi A, Koshima I. Efferent lymphatic vessel anastomosis (ELVA): supermicrosurgical efferent lymphatic vessel-to-venous anastomosis for the prophylactic treatment of subclinical lymphedema. Ann Plast Surg. 2016;76(4):424–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Yamamoto T, Yoshimatsu H, Narushima M, Yamamoto N, Hayashi A, Koshima I. Indocyanine green lymphography findings in primary leg lymphedema. Eur J Vasc Endovasc Surg. 2015;49:95–102.CrossRefPubMedGoogle Scholar
  20. 20.
    Yamamoto T, Koshima I, Yoshimatsu H, Narushima M, Mihara M, Iida T. Simultaneous multi-site lymphaticovenular anastomoses for primary lower extremity and genital lymphoedema complicated with severe lymphorrhea. J Plast Reconstr Aesthet Surg. 2011;64(6):812–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Plastic and Reconstructive SurgeryThe University of TokyoTokyoJapan

Personalised recommendations