Advertisement

Cryptanalysis of FIDES

  • Itai Dinur
  • Jérémy Jean
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8540)

Abstract

FIDES is a lightweight authenticated cipher, presented at CHES 2013. The cipher has two version, providing either 80-bit or 96-bit security. In this paper, we describe internal state-recovery attacks on both versions of FIDES, and show that once we recover the internal state, we can use it to immediately forge any message. Our attacks are based on a guess-and-determine algorithm, exploiting the slow diffusion of the internal linear transformation of FIDES. The attacks have time complexities of \(2^{75}\) and \(2^{90}\) for FIDES-80 and FIDES-96, respectively, use a very small amount of memory, and their most distinctive feature is their very low data complexity: the attacks require at most 24 bytes of an arbitrary plaintext and its corresponding ciphertext, in order to break the cipher with probability 1.

Keywords

Authenticated encryption FIDES Cryptanalysis Guess-and-determine 

References

  1. 1.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012) Google Scholar
  2. 2.
    Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: FIDES: lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013) Google Scholar
  3. 3.
    Biryukov, A.: The design of a stream cipher LEX. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007) Google Scholar
  4. 4.
    Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 447–466. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 169–187. Springer, Heidelberg (2011) Google Scholar
  6. 6.
    CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html
  7. 7.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002) Google Scholar
  8. 8.
    Dinur, I., Jean, J.: Cryptanalysis of FIDES. Cryptology ePrint Archive, Report 2014/058 (2014)Google Scholar
  9. 9.
    Dunkelman, O., Keller, N.: A new attack on the LEX stream cipher. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg (2008) Google Scholar
  10. 10.
    Khovratovich, D., Rechberger, C.: The LOCAL attack: cryptanalysis of the authenticated encryption scheme ALE. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 174–184. Springer, Heidelberg (2013) Google Scholar
  11. 11.
    Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-state-forgery attack against the authenticated encryption algorithm ALE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 377–404. Springer, Heidelberg (2013) Google Scholar

Copyright information

© International Association for Cryptologic Research 2015

Authors and Affiliations

  1. 1.École Normale SupérieureParisFrance
  2. 2.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations