Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Foundations of Software Science and Computation Structures

FoSSaCS 2015: Foundations of Software Science and Computation Structures pp 451–465Cite as

  1. Home
  2. Foundations of Software Science and Computation Structures
  3. Conference paper
On the Mints Hierarchy in First-Order Intuitionistic Logic

On the Mints Hierarchy in First-Order Intuitionistic Logic

  • Aleksy Schubert14,
  • Paweł Urzyczyn14 &
  • Konrad Zdanowski15 
  • Conference paper
  • 798 Accesses

  • 4 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9034)

Abstract

We study the decidability and complexity of fragments of intuitionistic first-order logic over ( ∀ , → ) determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We prove that fragments Π2 and Σ2 are undecidable and that Σ1 is Expspace-complete.

Keywords

  • Intuitionistic Logic
  • Object Variable
  • Relation Symbol
  • Proof Assistant
  • Unary Predicate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Project supported through NCN grant DEC-2012/07/B/ST6/01532.

Chapter PDF

Download to read the full chapter text

References

  1. Bonevac, D.: A history of quantification. In: Logic: A History of its Central Concepts. Handbook of the History of Logic, vol. 11, North Holland (2012)

    Google Scholar 

  2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic (1997)

    Google Scholar 

  3. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. Burr, W.: The intuitionistic arithmetical hierarchy. In: Logic Colloquium 1999. Lecture Notes in Logic, vol. 17, pp. 51–59. ASL (1999)

    Google Scholar 

  5. Church, A.: Introduction to Mathematical Logic. Princeton (1944)

    Google Scholar 

  6. Coq Development Team. The Coq Proof Assistant Reference Manual V8.4 (March 2012), http://coq.inria.fr/distrib/V8.4/refman/

  7. Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M., Voronkov, A.: Decidability and complexity of simultaneous rigid E-unification with one variable and related results. Theoretical Computer Science 243(1-2), 167–184 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Dowek, G., Jiang, Y.: Eigenvariables, bracketing and the decidability of positive minimal predicate logic. Theoretical Computer Science 360(1-3), 193–208 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Fitting, M.: Fundamentals of Generalized Recursion Theory. Elsevier (1981)

    Google Scholar 

  10. Fleischmann, J.: Syntactic preservation theorems for intuitionistic predicate logic. Notre Dame Journal of Formal Logic 51(2), 225–245 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Immerman, N.: Descriptive Complexity. Springer (1999)

    Google Scholar 

  12. Kreisel, G.: Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulae. J. Symbolic Logic 23(3), 317–330 (1958)

    CrossRef  MathSciNet  Google Scholar 

  13. Kuśmierek, D.: The inhabitation problem for rank two intersection types. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 240–254. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Mints, G.E.: Solvability of the problem of deducibility in LJ for a class of formulas not containing negative occurrences of quantifiers. Steklov Inst. 98, 135–145 (1968)

    MATH  Google Scholar 

  15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-Order Logic. Springer (2002)

    Google Scholar 

  16. Orevkov, V.P.: The undecidability in the constructive predicate calculus of the class of formulas of the form ¬¬ ∀ ∃. Doklady AN SSSR 163(3), 581–583 (1965)

    MathSciNet  Google Scholar 

  17. Orevkov, V.P.: Solvable classes of pseudoprenex formulas. Zapiski nauchnyh Seminarov LOMI 60, 109–170 (1976)

    MATH  MathSciNet  Google Scholar 

  18. Rasiowa, H., Sikorski, R.: On existential theorems in non-classical functional calculi. Fundamenta Mathematicae 41, 21–28 (1954)

    MATH  MathSciNet  Google Scholar 

  19. Rummelhoff, I.: Polymorphic Π1 Types and a Simple Approach to Propositions, Types and Sets. PhD thesis, University of Oslo (2007)

    Google Scholar 

  20. Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: How hard is positive quantification? (2014), http://www.mimuw.edu.pl/~alx/positive2conexp.pdf

  21. Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: Positive quantification is not elementary (with restricted instantiation) (2014), http://www.mimuw.edu.pl/~alx/positivenonelem.pdf

  22. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier (2006)

    Google Scholar 

  23. Urzyczyn, P.: Inhabitation of low-rank intersection types. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 356–370. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Informatics, University of Warsaw, ul. S. Banacha 2, 02-097, Warsaw, Poland

    Aleksy Schubert & Paweł Urzyczyn

  2. Cardinal Stefan Wyszyński University, Warsaw, ul. Dewajtis 5, 01-815, Poland

    Konrad Zdanowski

Authors
  1. Aleksy Schubert
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Paweł Urzyczyn
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Konrad Zdanowski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Aleksy Schubert .

Editor information

Editors and Affiliations

  1. University of Cambridge, Cambridge, United Kingdom

    Andrew Pitts

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schubert, A., Urzyczyn, P., Zdanowski, K. (2015). On the Mints Hierarchy in First-Order Intuitionistic Logic. In: Pitts, A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2015. Lecture Notes in Computer Science(), vol 9034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46678-0_29

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-46678-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46677-3

  • Online ISBN: 978-3-662-46678-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

3.239.2.192

Not affiliated

Springer Nature

© 2023 Springer Nature