Abstract
We study the decidability and complexity of fragments of intuitionistic first-order logic over ( ∀ , → ) determined by the alternation of positive and negative occurrences of quantifiers (Mints hierarchy). We prove that fragments Π2 and Σ2 are undecidable and that Σ1 is Expspace-complete.
Keywords
- Intuitionistic Logic
- Object Variable
- Relation Symbol
- Proof Assistant
- Unary Predicate
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Project supported through NCN grant DEC-2012/07/B/ST6/01532.
Chapter PDF
References
Bonevac, D.: A history of quantification. In: Logic: A History of its Central Concepts. Handbook of the History of Logic, vol. 11, North Holland (2012)
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives in Mathematical Logic (1997)
Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – A functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)
Burr, W.: The intuitionistic arithmetical hierarchy. In: Logic Colloquium 1999. Lecture Notes in Logic, vol. 17, pp. 51–59. ASL (1999)
Church, A.: Introduction to Mathematical Logic. Princeton (1944)
Coq Development Team. The Coq Proof Assistant Reference Manual V8.4 (March 2012), http://coq.inria.fr/distrib/V8.4/refman/
Degtyarev, A., Gurevich, Y., Narendran, P., Veanes, M., Voronkov, A.: Decidability and complexity of simultaneous rigid E-unification with one variable and related results. Theoretical Computer Science 243(1-2), 167–184 (2000)
Dowek, G., Jiang, Y.: Eigenvariables, bracketing and the decidability of positive minimal predicate logic. Theoretical Computer Science 360(1-3), 193–208 (2006)
Fitting, M.: Fundamentals of Generalized Recursion Theory. Elsevier (1981)
Fleischmann, J.: Syntactic preservation theorems for intuitionistic predicate logic. Notre Dame Journal of Formal Logic 51(2), 225–245 (2010)
Immerman, N.: Descriptive Complexity. Springer (1999)
Kreisel, G.: Elementary completeness properties of intuitionistic logic with a note on negations of prenex formulae. J. Symbolic Logic 23(3), 317–330 (1958)
Kuśmierek, D.: The inhabitation problem for rank two intersection types. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 240–254. Springer, Heidelberg (2007)
Mints, G.E.: Solvability of the problem of deducibility in LJ for a class of formulas not containing negative occurrences of quantifiers. Steklov Inst. 98, 135–145 (1968)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-Order Logic. Springer (2002)
Orevkov, V.P.: The undecidability in the constructive predicate calculus of the class of formulas of the form ¬¬ ∀ ∃. Doklady AN SSSR 163(3), 581–583 (1965)
Orevkov, V.P.: Solvable classes of pseudoprenex formulas. Zapiski nauchnyh Seminarov LOMI 60, 109–170 (1976)
Rasiowa, H., Sikorski, R.: On existential theorems in non-classical functional calculi. Fundamenta Mathematicae 41, 21–28 (1954)
Rummelhoff, I.: Polymorphic Π1 Types and a Simple Approach to Propositions, Types and Sets. PhD thesis, University of Oslo (2007)
Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: How hard is positive quantification? (2014), http://www.mimuw.edu.pl/~alx/positive2conexp.pdf
Schubert, A., Urzyczyn, P., Walukiewicz-Chrząszcz, D.: Positive quantification is not elementary (with restricted instantiation) (2014), http://www.mimuw.edu.pl/~alx/positivenonelem.pdf
Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Elsevier (2006)
Urzyczyn, P.: Inhabitation of low-rank intersection types. In: Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 356–370. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schubert, A., Urzyczyn, P., Zdanowski, K. (2015). On the Mints Hierarchy in First-Order Intuitionistic Logic. In: Pitts, A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2015. Lecture Notes in Computer Science(), vol 9034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46678-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-662-46678-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46677-3
Online ISBN: 978-3-662-46678-0
eBook Packages: Computer ScienceComputer Science (R0)