Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Principles of Security and Trust

POST 2015: Principles of Security and Trust pp 280–299Cite as

  1. Home
  2. Principles of Security and Trust
  3. Conference paper
Timing Attacks in Security Protocols: Symbolic Framework and Proof Techniques

Timing Attacks in Security Protocols: Symbolic Framework and Proof Techniques

  • Vincent Cheval15,16 &
  • Véronique Cortier15 
  • Conference paper
  • 1006 Accesses

  • 10 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 9036)

Abstract

We propose a framework for timing attacks, based on (a variant of) the applied-pi calculus. Since many privacy properties, as well as strong secrecy and game-based security properties, are stated as process equivalences, we focus on (time) trace equivalence. We show that actually, considering timing attacks does not add any complexity: time trace equivalence can be reduced to length trace equivalence, where the attacker no longer has access to execution times but can still compare the length of messages. We therefore deduce from a previous decidability result for length equivalence that time trace equivalence is decidable for bounded processes and the standard cryptographic primitives.

As an application, we study several protocols that aim for privacy. In particular, we (automatically) detect an existing timing attack against the biometric passport and new timing attacks against the Private Authentication protocol.

Keywords

  • Computation Time
  • Timing Attack
  • Time Function
  • Function Symbol
  • Security Protocol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 258865, project ProSecure.

Download conference paper PDF

References

  1. http://nacl.cr.yp.to/

  2. Machine readable travel document. Technical Report 9303, International Civil Aviation Organization (2008)

    Google Scholar 

  3. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theoretical Computer Science 387(1-2), 2–32 (2006)

    CrossRef  MathSciNet  Google Scholar 

  4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th ACM Symp. on Principles of Programming Languages, POPL 2001 (2001)

    Google Scholar 

  5. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. In: 4th Conference on Computer and Communications Security (CCS 1997), pp. 36–47. ACM Press (1997)

    Google Scholar 

  6. Abadi, M., Blanchet, B.: Analyzing Security Protocols with Secrecy Types and Logic Programs. Journal of the ACM 52(1), 102–146 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Science 322(3), 427–476 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided cryptography: Efficient provably secure machine code from high-level implementations. In: 21st ACM Conference on Computer and Communications Security, CCS 2013 (2013)

    Google Scholar 

  9. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using the applied pi calculus. In: 23rd IEEE Computer Security Foundations Symposium, CSF 2010 (2010)

    Google Scholar 

  10. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar, R.: New privacy issues in mobile telephony: fix and verification. In: ACM Conference on Computer and Communications Security, pp. 205–216 (2012)

    Google Scholar 

  11. Backes, M., Doychev, G., Köpf, B.: Preventing side-channel leaks in web traffic: A formal approach. In: Network and Distributed System Security Symposium, NDSS 2013 (2013)

    Google Scholar 

  12. Backes, M., Duermuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic emanations of printers. In: 19th USENIX Security Symposium (2010)

    Google Scholar 

  13. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of information leaks. In: Symposium on Security and Privacy, S&P 2009 (2009)

    Google Scholar 

  14. Baudet, M., Cortier, V., Delaune, S.: YAPA: A generic tool for computing intruder knowledge. ACM Transactions on Computational Logic 14 (2013)

    Google Scholar 

  15. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy goals. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998. LNCS, vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  16. Bernstein, D.J., Chou, T., Schwabe, P.: Mcbits: Fast constant-time code-based cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 250–272. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  17. Biondi, F., Legay, A., Malacaria, P., Wąsowski, A.: Quantifying information leakage of randomized protocols. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 68–87. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  18. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equivalences for Security Protocols. In: 20th Symposium on Logic in Computer Science, LICS 2005 (2005)

    Google Scholar 

  19. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Symposium on Security and Privacy (S&P 2004), pp. 86–100. IEEE Comp. Soc. Press (2004)

    Google Scholar 

  20. Cheval, V.: APTE (Algorithm for Proving Trace Equivalence) (2013), http://projects.lsv.ens-cachan.fr/APTE/

  21. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative tests and non-determinism. In: 18th ACM Conference on Computer and Communications Security, CCS 2011 (2011)

    Google Scholar 

  22. Cheval, V.: Apte: an algorithm for proving trace equivalence. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 587–592. Springer, Heidelberg (2014)

    Google Scholar 

  23. Cheval, V., Blanchet, B.: Proving more observational equivalences with proverif. In: Basin, D., Mitchell, J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 226–246. Springer, Heidelberg (2013)

    Google Scholar 

  24. Cheval, V., Cortier, V., Plet, A.: Lengths may break privacy – or how to check for equivalences with length. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 708–723. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  25. Chothia, T., Smirnov, V.: A traceability attack against e-passports. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 20–34. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  26. Cohen, E.: Taps: A first-order verifier for cryptographic protocols. In: 13th IEEE Computer Security Foundations Workshop (CSFW 2000). IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  27. Comon-Lundh, H., Cortier, V.: Computational soundness of observational equivalence. In: 15th Conf. on Computer and Communications Security, CCS 2008 (2008)

    Google Scholar 

  28. Cortier, V., Delaune, S.: Decidability and combination results for two notions of knowledge in security protocols. Journal of Automated Reasoning, 48 (2012)

    Google Scholar 

  29. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting protocols. Journal of Computer Security (4), 435–487 (2008)

    Google Scholar 

  30. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP using PVS. In: Cuppens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS, vol. 1895, pp. 222–237. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  31. Gorrieri, R., Locatelli, E., Martinelli, F.: A simple language for real-time cryptographic protocol analysis. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 114–128. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  32. Jakubowska, G., Penczek, W.: Modelling and checking timed authentication of security protocols. Fundamenta Informaticae, 363–378 (2007)

    Google Scholar 

  33. Käsper, E., Schwabe, P.: Faster and timing-attack resistant aes-gcm. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  34. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  35. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In: 14th ACM Conf. on Computer and Communications Security, CCS 2007 (2007)

    Google Scholar 

  36. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security model: Automatic detection and removal of control-flow side channel attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  37. Phan, Q.-S., Malacaria, P., Tkachuk, O., Pasareanu, C.S.: Symbolic quantitative information flow. ACM SIGSOFT Software Engineering Notes (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LORIA, CNRS, Nancy, France

    Vincent Cheval & Véronique Cortier

  2. School of Computing, University of Kent, Kent, UK

    Vincent Cheval

Authors
  1. Vincent Cheval
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Véronique Cortier
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Ca' Foscari University, Venice, Italy

    Riccardo Focardi

  2. Cornell University, Ithaca, New York, USA

    Andrew Myers

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheval, V., Cortier, V. (2015). Timing Attacks in Security Protocols: Symbolic Framework and Proof Techniques. In: Focardi, R., Myers, A. (eds) Principles of Security and Trust. POST 2015. Lecture Notes in Computer Science(), vol 9036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46666-7_15

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-46666-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46665-0

  • Online ISBN: 978-3-662-46666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature