Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Principles of Security and Trust

POST 2015: Principles of Security and Trust pp 259–279Cite as

  1. Home
  2. Principles of Security and Trust
  3. Conference paper
Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols

  • Max Kanovich15,19,
  • Tajana Ban Kirigin16,
  • Vivek Nigam17,
  • Andre Scedrov18,19 &
  • …
  • Carolyn Talcott20 
  • Conference paper
  • 1109 Accesses

  • 12 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 9036)

Abstract

Many security protocols rely on the assumptions on the physical properties in which its protocol sessions will be carried out. For instance, Distance Bounding Protocols take into account the round trip time of messages and the transmission velocity to infer an upper bound of the distance between two agents. We classify such security protocols as Cyber-Physical. Time plays a key role in design and analysis of many of these protocols. This paper investigates the foundational differences and the impacts on the analysis when using models with discrete time and models with dense time. We show that there are attacks that can be found by models using dense time, but not when using discrete time. We illustrate this with a novel attack that can be carried out on most distance bounding protocols. In this attack, one exploits the execution delay of instructions during one clock cycle to convince a verifier that he is in a location different from his actual position. We propose a Multiset Rewriting model with dense time suitable for specifying cyber-physical security protocols. We introduce Circle-Configurations and show that they can be used to symbolically solve the reachability problem for our model. Finally, we show that for the important class of balanced theories the reachability problem is PSPACE-complete.

Keywords

  • Unit Circle
  • Round Trip Time
  • Security Protocol
  • Dense Time
  • Reachability Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physical properties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16 (2011)

    CrossRef  Google Scholar 

  3. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical & provably secure distance-bounding. IACR Cryptology ePrint Archive, 2013:465 (2013)

    Google Scholar 

  4. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  5. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications 24(2), 221–232 (2006)

    CrossRef  Google Scholar 

  6. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for protocol analysis. In: CSFW, pp. 55–69 (1999)

    Google Scholar 

  7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed analysis of security protocols. J. Comput. Secur. 15(6), 619–645 (2007)

    Google Scholar 

  9. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks on distance bounding protocols. In: SP (2012)

    Google Scholar 

  10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the complexity of bounded security protocols. Journal of Computer Security 12(2), 247–311 (2004)

    Google Scholar 

  12. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)

    Google Scholar 

  13. Escobar, S., Meadows, C., Meseguer Maude-NPA, J.: Cryptographic Protocol Analysis Modulo Equational Properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

    Google Scholar 

  14. Ganeriwal, S., Pöpper, C., Capkun, S., Srivastava, M.B.: Secure time synchronization in sensor networks. ACM Trans. Inf. Syst. Secur., 11(4) (2008)

    Google Scholar 

  15. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A.: Bounded memory Dolev-Yao adversaries in collaborative systems. Inf. Comput. (2014)

    Google Scholar 

  16. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A.: Bounded memory protocols and progressing collaborative systems. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 309–326. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  17. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L.: Towards timed models for cyber-physical security protocols. Available on Nigam’s homepage (2014)

    Google Scholar 

  18. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.: A rewriting framework for activities subject to regulations. In: RTA, pp. 305–322 (2012)

    Google Scholar 

  19. Kanovich, M.I., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C.L., Perovic, R.: A rewriting framework and logic for activities subject to regulations (2014), submitted, available on Nigam’s homepage

    Google Scholar 

  20. Kanovich, M.I., Rowe, P., Scedrov, A.: Collaborative planning with confidentiality. J. Autom. Reasoning 46(3-4), 389–421 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Reachability results for timed automata with unbounded data structures. Acta Inf. 47(5-6), 279–311 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  23. Malladi, S., Bruhadeshwar, B., Kothapalli, K.: Automatic analysis of distance bounding protocols, CoRR, abs/1003.5383 (2010)

    Google Scholar 

  24. Meadows, C., Poovendran, R., Pavlovic, D., Chang, L., Syverson, P.F.: Distance bounding protocols: Authentication logic analysis and collusion attacks. In: Secure Localization and Time Synchronization for Wireless Sensor and Ad Hoc Networks, pp. 279–298 (2007)

    Google Scholar 

  25. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large networks of computers. Commun. ACM 21(12), 993–999 (1978)

    CrossRef  MATH  Google Scholar 

  26. Pavlovic, D., Meadows, C.: Deriving ephemeral authentication using channel axioms. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 240–261. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  27. Sarukkai, S., Suresh, S.P.: Tagging makes secrecy decidable with unbounded nonces as well. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 363–374. Springer, Heidelberg (2003)

    Google Scholar 

  28. Ravi, K., Varun, G.H., Vamsi, P.T.: Rfid based security system. International Journal of Innovative Technology and Exploring Engineering 2 (2013)

    Google Scholar 

  29. Wang, M.-H.: Secure verification of location claims with simultaneous distance modification. In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp. 181–195. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  30. Sun, K., Ning, P., Wang, C.: Tinysersync: secure and resilient time synchronization in wireless sensor networks. In: CCS, pp. 264–277 (2006)

    Google Scholar 

  31. Tippenhauer, N.O., Čapkun, S.: ID-based secure distance bounding and localization. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 621–636. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Queen Mary, University of London & University College, London, UK

    Max Kanovich

  2. University of Rijeka,HR, Rijeka, Croatia

    Tajana Ban Kirigin

  3. Federal University of Paraba, João Pessoa, Brazil

    Vivek Nigam

  4. University of Pennsylvania, Philadelphia, USA

    Andre Scedrov

  5. National Research University Higher School of Economics, Moscow, Russia

    Max Kanovich & Andre Scedrov

  6. SRI International, Menlo Park, USA

    Carolyn Talcott

Authors
  1. Max Kanovich
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tajana Ban Kirigin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Vivek Nigam
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Andre Scedrov
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Carolyn Talcott
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Max Kanovich .

Editor information

Editors and Affiliations

  1. Ca' Foscari University, Venice, Italy

    Riccardo Focardi

  2. Cornell University, Ithaca, New York, USA

    Andrew Myers

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C. (2015). Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols. In: Focardi, R., Myers, A. (eds) Principles of Security and Trust. POST 2015. Lecture Notes in Computer Science(), vol 9036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46666-7_14

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-46666-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46665-0

  • Online ISBN: 978-3-662-46666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

3.235.60.197

Not affiliated

Springer Nature

© 2023 Springer Nature