Quantitative Approaches to the Protection of Private Information: State of the Art and Some Open Challenges

  • Catuscia Palamidessi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9036)


Privacy is a broad concept affecting a variety of modern-life activities. As a consequence, during the last decade there has been a vast amount of research on techniques to protect privacy, such as communication anonymizers [9], electronic voting systems [8], Radio-Frequency Identification (RFID) protocols [13] and private information retrieval schemes [7], to name a few.


Side Channel Attack Private Information Retrieval Communication Anonymizers Privacy Breach USENIX Security Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Additive and multiplicative notions of leakage, and their capacities. In: IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, July 19-22, pp. 308–322. IEEE (2014)Google Scholar
  2. 2.
    Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proceedings of the 25th IEEE Computer Security Foundations Symposium (CSF), pp. 265–279 (2012)Google Scholar
  3. 3.
    Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proceedings of the 20th ACM Conference on Computer and Communications Security (CCS 2013), pp. 901–914. ACM (2013)Google Scholar
  4. 4.
    Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Optimal geo-indistinguishable mechanisms for location privacy. In: Proceedings of the 21th ACM Conference on Computer and Communications Security, CCS 2014 (2014)Google Scholar
  5. 5.
    Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the Scope of Differential Privacy Using Metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A Predictive Differentially-Private Mechanism for Mobility Traces. In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 21–41. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 41–50. IEEE (1995)Google Scholar
  8. 8.
    Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting protocols. Journal of Computer Security 17(4), 435–487 (2009)Google Scholar
  9. 9.
    Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320. USENIX (2004)Google Scholar
  10. 10.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dwork, C.: A firm foundation for private data analysis. Communications of the ACM 54(1), 86–96 (2011)CrossRefGoogle Scholar
  12. 12.
    Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), Bethesda, MD, USA, May 31-June 2, pp. 371–380. ACM (2009)Google Scholar
  13. 13.
    Juels, A.: Rfid security and privacy: A research survey. IEEE Journal on Selected Areas in Communications 24(2), 381–394 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract Channels and Their Robust Information-Leakage Ordering. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings of the 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE Computer Society (2009)Google Scholar
  16. 16.
    Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data. Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  17. 17.
    Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: ACM (ed.) PODS 1998. Proceedings of the ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems, Seattle, Washington, June 1-3, pp. 188–188. ACM Press (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Catuscia Palamidessi
    • 1
  1. 1.INRIA Saclay and LIX, École PolytechniqueLe Chesnay CedexFrance

Personalised recommendations