Photoelectrochemical Conversion Processes

  • Stuart Licht
Part of the Springer Handbooks book series (SHB)


Society’s electrical needs are largely continuous. However, clouds and darkness dictate that photovoltaic solar cells have an intermittent output. A photoelectrochemical solar cell (PEC ) can generate not only electrical but also electrochemical energy, and provide the basis for a system with an energy storage component. Sufficiently energetic insolation incident on semiconductors can drive electrochemical oxidation/reduction and generate chemical, electrical or electrochemical energy. Aspects include efficient dye sensitized or direct solar to electrical energy conversion, solar electrochemical synthesis (electrolysis), including water splitting to form hydrogen, environmental cleanup and solar energy storage cells. The PEC utilizes light to carry out an electrochemical reaction, converting light to both chemical and electrical energy. This fundamental difference of the photovoltaic (PV ) solar cell’s solid/solid interface, and the PEC’s solid/liquid interface has several ramifications in cell function and application. Energetic constraints imposed by single bandgap semiconductors have limited the demonstrated values of photoelectrochemical solar to electrical energy conversion efficiency to 16 %, and multiple bandgap cells can lead to significantly higher conversion efficiencies.

Photoelectrochemical systems may facilitate not only solar to electrical energy conversion , but have also led to investigations in solar photoelectrochemical production of fuels and photoelectrochemical detoxification of pollutants, and efficient solar thermal electrochemical production (STEP ) of metals, fuels, bleach and carbon capture [24.1].


Solar Cell Carbon Capture Photoelectrochemical Cell Photovoltaic Solar Cell Electrical Energy Conversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

counter electrode


concentrator photovoltaic cell




multiple bandgap photoelectrochemical solar cell






semiconductor photoelectrode


solar thermal electrochemical production




  1. [1]
    S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)CrossRefGoogle Scholar
  2. [2]
    E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839)Google Scholar
  3. [3]
    H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961)Google Scholar
  4. [4]
    H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970)Google Scholar
  5. [5]
    A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  6. [6]
    T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1Google Scholar
  7. [7]
    G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)CrossRefGoogle Scholar
  8. [8]
    A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)CrossRefGoogle Scholar
  9. [9]
    B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)CrossRefGoogle Scholar
  10. [10]
    A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)CrossRefGoogle Scholar
  11. [11]
    M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)CrossRefGoogle Scholar
  12. [12]
    R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212Google Scholar
  13. [13]
    S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002)Google Scholar
  14. [14]
    M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008)Google Scholar
  15. [15]
    K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008)Google Scholar
  16. [16]
    L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010)Google Scholar
  17. [17]
    S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)CrossRefGoogle Scholar
  18. [18]
    R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)CrossRefGoogle Scholar
  19. [19]
    S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)CrossRefGoogle Scholar
  20. [20]
    S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)CrossRefGoogle Scholar
  21. [21]
    S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRefGoogle Scholar
  22. [22]
    H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)CrossRefGoogle Scholar
  23. [23]
    H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)CrossRefGoogle Scholar
  24. [24]
    B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  25. [25]
    D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)CrossRefGoogle Scholar
  26. [26]
    S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002)Google Scholar
  27. [27]
    S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)CrossRefGoogle Scholar
  28. [28]
    S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)CrossRefGoogle Scholar
  29. [29]
    S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4Google Scholar
  30. [30]
    S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)CrossRefGoogle Scholar
  31. [31]
    S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)CrossRefGoogle Scholar
  32. [32]
    B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)CrossRefGoogle Scholar
  33. [33]
    S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10Google Scholar
  34. [34]
    H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)CrossRefGoogle Scholar
  35. [35]
    M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2Google Scholar
  36. [36]
    J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3Google Scholar
  37. [37]
    K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)CrossRefGoogle Scholar
  38. [38]
    J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008)Google Scholar
  39. [39]
    T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)CrossRefGoogle Scholar
  40. [40]
    B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994)Google Scholar
  41. [41]
    C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)CrossRefGoogle Scholar
  42. [42]
    D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)CrossRefGoogle Scholar
  43. [43]
    J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992)Google Scholar
  44. [44]
    M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)CrossRefGoogle Scholar
  45. [45]
    T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)CrossRefGoogle Scholar
  46. [46]
    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)CrossRefGoogle Scholar
  47. [47]
    N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)CrossRefGoogle Scholar
  48. [48]
    S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)CrossRefGoogle Scholar
  49. [49]
    S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)CrossRefGoogle Scholar
  50. [50]
    B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)CrossRefGoogle Scholar
  51. [51]
    S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)CrossRefGoogle Scholar
  52. [52]
    J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)CrossRefGoogle Scholar
  53. [53]
    F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)CrossRefGoogle Scholar
  54. [54]
    F.-F. Li, J. Lau, S. Licht: Sungas instead of syngas: Efficient co-production of CO and H2 from a single beam of sunlight, Adv. Sci. (2015), doi: 10.1002/advs.201500260
  55. [55]
    J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)CrossRefGoogle Scholar
  56. [56]
    Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)CrossRefGoogle Scholar
  57. [57]
    S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)CrossRefGoogle Scholar
  58. [58]
    S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998)Google Scholar
  59. [59]
    S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)CrossRefGoogle Scholar
  60. [60]
    W.C. Butterman, W.E. Brooks, R.G. Reese: Cesium, US Publication Open-File Report, Vol. 2004–1432 (US Geological Service, Washington 2004), Google Scholar
  61. [61]
    J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)CrossRefGoogle Scholar
  62. [62]
    S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)CrossRefGoogle Scholar
  63. [63]
    C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Stuart Licht
    • 1
  1. 1.Dept. ChemistryGeorge Washington UniversityWashingtonUSA

Personalised recommendations