Skip to main content

Part of the book series: Springer Handbooks ((SHB))

  • 6543 Accesses

Abstract

Elements constituting a fuel cell laboratory are succinctly discussed using the experience developed at the Hawaii Sustainable Energy Research Facility. The information is expected to be useful to organizations with a desire to create or improve a fuel cell laboratory in view of the recent and anticipated fuel cell commercialization activities. Topics discussed cover a wide range with an emphasis on differentiating aspects from other types of laboratories including safety, fuel cell and test equipment, and methods used to characterize fuel cells. The use of hydrogen, oxygen and specifically introduced chemical species, and the presence of high voltages and electrical short risks constitute the most prominent hazards. Reactant purity, cleaning, test station control including data acquisition, and calibration are the most important considerations to ensure fuel cell characterization data quality. Cleanliness is also an important consideration for the fuel cell assembly and integration into the test station. The fuel cell assembly also needs to be verified for faults. Fuel cells need to be conditioned for optimum performance before a purposefully designed test plan is implemented. Many fuel cell diagnostic methods are available but novel techniques are still needed in many areas including through plane temperature distribution, stack diagnostics and mass transfer properties. The emphasis is given to commonly and sparingly used electrochemical techniques. In situ techniques include polarization, impedance spectroscopy, voltammetry and current distribution over the active area. Ex situ techniques include the rotating ring-disc electrode and the membrane conductivity cell. Other nonelectrochemical techniques are also useful to understand fuel cell behavior and include the analysis of reactant streams and condensed water, and spectroscopic measurements in combination with electrochemical cells (spectroelectrochemical cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

ASTMI:

American Society for Testing and Materials International

BP:

bypass

CCM:

catalyst coated membrane

CE:

counter electrode

CPE:

constant phase element

CV:

cyclic voltammetry

DSC:

differential scanning calorimetry

ECSA:

electrochemical active surface area

EDAX/EDS:

energy dispersive x-ray analysis spectrometer

EEC:

equivalent electrical circuit

EIS:

electrochemical impedance spectroscopy

ESEM:

environmental scanning electron microscopy

EXAFS:

extended x-ray absorption fine structure

FC:

fuel cell

FRA:

frequency response analyzer

FTIR:

Fourier-transform infrared

GDE:

gas diffusion electrode

GDL:

gas diffusion layer

HOR:

hydrogen oxidation reaction

LSV:

linear sweep voltammetry

LT:

low temperature

MEA:

membrane–electrode assembly

MIP:

mercury intrusion porosimetry

MSDS:

material safety data sheet

OCV:

open circuit voltage

ORR:

oxygen reduction reaction

PEMFC:

proton-exchange membrane fuel cell

REDD:

x-ray radial electron density distribution

RE:

reference electrode

RRDE:

rotating ring-disc electrode

SAXS:

small angle x-ray scattering

SEM:

scanning electron microscopy

SOFC:

solid oxide fuel cell

STM:

scanning tunneling microscopy

TEM:

transmission electron microscopy

TGA:

thermogravimetric analysis

WDS:

wavelength dispersive x-ray spectrometer

WE:

working electrode

XANES:

x-ray absorption near-edge spectroscopy

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

References

  1. Breakthrough Technologies Inst. Inc.: 2011 Fuel Cell Technologies Market Report, DOE/EE 0755 (United States Department of Energy, Washington 2012)

    Google Scholar 

  2. J. Köhler, M. Wietschel, L. Whitmarsh, D. Keles, W. Schade: Infrastructure investment for a transition to hydrogen automobiles, Technol. Forecast. Soc. Change 77, 1237–1248 (2010)

    Article  Google Scholar 

  3. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu: Electrochemical energy storage for green grid, Chem. Rev. 111, 3577–3613 (2011)

    Article  Google Scholar 

  4. N. Maximova, O. Dahl: A set up of a modern analytical laboratory for wastewaters from pulp and paper industry, Chem. Soc. Rev. 36, 1323–1349 (2007)

    Article  Google Scholar 

  5. M.J. D’Amato, K.W. Lux, K.A. Walz, H. Walter Kerby, B. Anderegg: Introducing new learning tools into a standard classroom: A multi-tool approach to integrating fuel-cell concepts into introductory college chemistry, J. Chem. Educ. 84, 248–252 (2007)

    Article  Google Scholar 

  6. M. Shirkhanzadeh: Thin-layer fuel cell for teaching and classroom demonstrations, J. Chem. Educ. 86, 324–329 (2009)

    Article  Google Scholar 

  7. P. Lunghi, S. Ubertini: First steps towards fuel cells testing harmonisation: Procedures and parameters for single cell performance evaluation, Fuel Cells 3, 208–219 (2004)

    Article  Google Scholar 

  8. R. Cuccaro, M. Lucariello, A. Battaglia, A. Graizzaro: Research of a HySyLab internal standard procedure for single PEMFC, Int. J. Hydrog. Energy 33, 3159–3166 (2008)

    Article  Google Scholar 

  9. T. Malkow, A. Saturnio, A. Pilenga, G. De Marco, M. Honselaar, G. Tsotridis: Assessment of PEFC performance by applying harmonized testing procedure, Int. J. Energy Res. 35, 1075–1089 (2011)

    Article  Google Scholar 

  10. G. De Moor, C. Bas, F. Lesage, A. Sophie Danérol, E. Claude, E. Rossinot, M. Paris, L. Flandin, N. Dominique Albérola: Understanding the degradation of MEA in PEMFC: Definition of structural markers and comparison between laboratory and on-site ageing, J. Appl. Polym. Sci. 120, 3501–3510 (2011)

    Article  Google Scholar 

  11. J. St-Pierre: PEMFC in-situ liquid-water-content monitoring status, J. Electrochem. Soc. 154, B724–B731 (2007)

    Article  Google Scholar 

  12. S.A. Freunberger, M. Reum, J. Evertz, A. Wokaun, F.N. Büchi: Measuring the current distribution in PEFCs with sub-millimeter resolution I. methodology, J. Electrochem. Soc. 153, A2158–A2165 (2006)

    Article  Google Scholar 

  13. J. St-Pierre: PEMFC contamination model: Foreign cation exchange with ionomer protons, J. Power Sources 196, 6274–6283 (2011)

    Article  Google Scholar 

  14. J. St-Pierre: PEMFC contaminant tolerance limit-foreign cations in ionomers, Int. J. Hydrog. Energy 36, 5527–5535 (2011)

    Article  Google Scholar 

  15. A.M. Sapienza: Managing Scientists: Leadership Strategies in Scientific Research, 2nd edn. (Wiley-Liss, Hoboken 2004) pp. 31–33

    Book  Google Scholar 

  16. M. Reijalt: Hydrogen and fuel cell education in Europe: From when? and where? to here! and now!, J. Clean. Prod. 18, S112–S117 (2010)

    Article  Google Scholar 

  17. Fuel Cell Today, http://www.fuelcelltoday.com

  18. J. Glassey, S. Haile: Sustainability in chemical engineering curriculum, Int. J. Sustain. High. Educ. 13, 354–364 (2012)

    Article  Google Scholar 

  19. L. Diener: Selected online resources for teaching about alternative energy, J. Chem. Educ. 89, 950–952 (2012)

    Article  Google Scholar 

  20. R. Wünschiers, P. Lindblad: Hydrogen in education – A biological approach, Int. J. Hydrog. Energy 27, 1131–1140 (2002)

    Article  Google Scholar 

  21. B. Briggs, T. Mitton, R. Smith, T. Magnuson: Teaching cellular respiration and alternate energy sources with a laboratory exercise developed by a scientist-teacher partnership, Am. Biol. Teach. 71, 164–167 (2009)

    Article  Google Scholar 

  22. A. Serov, C. Kwak: Direct hydrazine fuel cells: A review, Appl. Catal. B 98, 1–9 (2010)

    Article  Google Scholar 

  23. A. Serov, C. Kwak: Progress in development of direct dimethyl ether fuel cells, Appl. Catal. B 91, 1–10 (2009)

    Article  Google Scholar 

  24. F. Yang, K. Cheng, X. Liu, S. Chang, J. Yin, C. Du, L. Du, G. Wang, D. Cao: Direct peroxide-peroxide fuel cell – Part 2: Effects of conditions on the performance, J. Power Sources 217, 569–573 (2012)

    Article  Google Scholar 

  25. J. Ma, N.A. Choudhury, Y. Sahai: A comprehensive review of direct borohydride fuel cells, Renew. Sustain. Energy Rev. 14, 183–199 (2010)

    Article  Google Scholar 

  26. G.R. Astbury: A review of the properties and hazards of some alternative fuels, Process Saf. Environ. Prot. 86, 397–414 (2008)

    Article  Google Scholar 

  27. Compressed Gas Association: Handbook of Compressed Gases, 4th edn. (Springer, Berlin, Heidelberg 1999)

    Book  Google Scholar 

  28. C.H. Rivkin (Ed.): The NFPA Guide to Gas Safety (National Fire Protection Association, Quincy 2005)

    Google Scholar 

  29. Y.W. Rho, S. Srinivasan, Y.T. Kho: Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures II: Theoretical analysis, J. Electrochem. Soc. 141, 2089–2096 (1994)

    Article  Google Scholar 

  30. T.V. Reshetenko, G. Bender, K. Bethune, R. Rocheleau: Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution, Electrochimica Acta 56, 8700–8710 (2011)

    Article  Google Scholar 

  31. H.D. Beeson, S.R. Smith, W.F. Stewart (Eds.): Safe Use of Oxygen and Oxygen Systems: Handbook for Design, Operation, and Maintenance, 2nd edn. (ASTM Intl., West Conshohocken 2007)

    Google Scholar 

  32. D.K. Berry: Air toxics in the United States – Magnitude of the problem and strategy for control, Toxicol. Ind. Health 6, 1–12 (1990)

    Article  Google Scholar 

  33. P.M. Lemieux, C.C. Lutes, D.A. Santoianni: Emissions of organic air toxics from open burning: A comprehensive review, Prog. Energy Combust. Sci. 30, 1–32 (2004)

    Article  Google Scholar 

  34. G.M. Woodall, R.L. Smith: The air toxics health effects database (ATHED), Toxicol. Appl. Pharmacol. 233, 20–24 (2008)

    Article  Google Scholar 

  35. J. St-Pierre, M.S. Angelo, Y. Zhai: Focusing research by developing performance related selection criteria for PEMFC contaminants, Electrochem. Soc. Trans. 41(1), 279–286 (2011)

    Google Scholar 

  36. R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, N. Iwashita: Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev. 107, 3904–3951 (2007)

    Article  Google Scholar 

  37. C.S. Macomber, J. Christ, H. Wang, B. Pivovar, H.N. Dinh: Characterizing leachant contaminants from fuel cell assembly aids, a prelude to effects on performance, Electrochem. Soc. Trans. 50(2), 603–618 (2012)

    Google Scholar 

  38. J. Diep, D. Kiel, J. St-Pierre, A. Wong: Development of a residence time distribution method for proton exchange membrane fuel cell evaluation, Chem. Eng. Sci. 62, 846–857 (2007)

    Article  Google Scholar 

  39. J. St-Pierre, A. Wong, J. Diep, D. Kiel: Demonstration of a residence time distribution method for proton exchange membrane fuel cell evaluation, J. Power Sources 164, 196–202 (2007)

    Article  Google Scholar 

  40. H.S. Fogler: Elements of Chemical Reaction Engineering, 4th edn. (Prentice Hall, Upper Saddle River 2006) p. 871

    Google Scholar 

  41. D. Roberts: 50-V shock hazard threshold, IEEE Trans. Ind. Appl. 46, 102–107 (2010)

    Article  Google Scholar 

  42. T.B. Reddy (Ed.): Linden’s Handbook of Batteries, 4th edn. (McGraw-Hill, New York 2011), Chap. 5

    Google Scholar 

  43. S. Kreitmeier, M. Michiardi, A. Wokaun, F.N. Büchi: Factors determining the gas crossover through pinholes in polymer electrolyte fuel cell membranes, Electrochimica Acta 80, 240–247 (2012)

    Article  Google Scholar 

  44. A.Z. Weber: Gas-crossover and membrane-pinhole effects in polymer-electrolyte fuel cells, J. Electrochem. Soc. 155, B521–B531 (2008)

    Article  Google Scholar 

  45. J. Zhang, J. Lee: A review on prognostics and health monitoring of Li-ion battery, J. Power Sources 196, 6007–6014 (2011)

    Article  Google Scholar 

  46. J. St-Pierre: Air impurities. In: Polymer Electrolyte Fuel Cell Durability, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt (Springer, Berlin, Heidelberg 2009) pp. 289–321

    Chapter  Google Scholar 

  47. K. Promislow, J. St-Pierre, B. Wetton: A simple, analytic model of polymer electrolyte membrane fuel cell anode recirculation at operating power including nitrogen crossover, J. Power Sources 196, 10050–10056 (2011)

    Article  Google Scholar 

  48. G. Randolf, R.M. Moore: Test system design for hardware-in-loop evaluation of PEM fuel cells and auxiliaries, J. Power Sources 158, 392–396 (2005)

    Article  Google Scholar 

  49. R.M. Moore, K.H. Hauer, G. Randolf, M. Virji: Fuel cell hardware-in-loop, J. Power Sources 162, 302–308 (2006)

    Article  Google Scholar 

  50. D. Stolten, T. Grube (Eds.): 18th World Hydrogen Energy Conference–WHEC 2010, Parallel Sessions Book 6: Stationary Applications/Transportation Applications (Forchungszentrum Jülich, Jülich 2010) pp. 115–120

    Google Scholar 

  51. S. Begot, F. Harel, J.M. Kauffmann: Design and validation of a 2 kW-fuel cell test bench for subfreezing studies, Fuel Cells 8, 23–32 (2008)

    Article  Google Scholar 

  52. T.A. Zawodzinski Jr., C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld: Water uptake by and transport through Nafion 117 membranes, J. Electrochem. Soc. 140, 1041–1047 (1993)

    Article  Google Scholar 

  53. F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 55–57

    Google Scholar 

  54. S. Pischinger, O. Lang: Air-supply components. In: Handbook of Fuel Cells, Vol. 4, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 727–741

    Google Scholar 

  55. M.J. Lampinen, M. Fomino: Analysis of free energy and entropy changes for half-cell reactions, J. Electrochem. Soc. 140, 3537–3546 (1993)

    Article  Google Scholar 

  56. J. St-Pierre, J. Roberts, K. Colbow, S. Campbell, A. Nelson: PEMFC operational and design strategies for sub zero environments, J. New Mater. Electrochem. Syst. 8, 163–176 (2005)

    Google Scholar 

  57. R. Hanke-Rauschenbach, M. Mangold, K. Sundmacher: Bistable current-voltage characteristics of PEM fuel cells operated with reduced feed stream humidification, J. Electrochem. Soc. 155, B97–B107 (2008)

    Article  Google Scholar 

  58. T. Kadyk, S. Kirsch, R. Hanke-Rauschenbach, K. Sundmacher: Autonomous potential oscillations at the Pt anode of a polymer electrolyte membrane fuel cell under CO poisoning, Electrochimica Acta 56, 10593–10602 (2011)

    Article  Google Scholar 

  59. A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki: Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation, J. Power Sources 130, 42–49 (2004)

    Article  Google Scholar 

  60. Anonymous: Fuel Cell Testing – The NI Way, White Paper 2759 (National Instruments, Austin 2012)

    Google Scholar 

  61. J. St-Pierre: Stacks. In: Encyclopedia of Electrochemical Power Sources, Vol. 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam 2009) pp. 879–889

    Chapter  Google Scholar 

  62. V. Mehta, J.S. Cooper: Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114, 32–53 (2003)

    Article  Google Scholar 

  63. H. Tawfik, Y. Hung, D. Mahajan: Metal bipolar plates for PEM fuel cell – A review, J. Power Sources 163, 755–767 (2007)

    Article  Google Scholar 

  64. J.H. Nam, M. Kaviany: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transf. 46, 4595–4611 (2003)

    Article  Google Scholar 

  65. G. Lin, T. Van Nguyen: Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC, J. Electrochem. Soc. 152, A1942–A1948 (2005)

    Article  Google Scholar 

  66. J. St-Pierre: Overview performance and operational conditions. In: Encyclopedia of Electrochemical Power Sources, Vol. 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati (Elsevier, Amsterdam 2009) pp. 901–911

    Chapter  Google Scholar 

  67. S.-Y. Ahn, S.-J. Shin, H.Y. Ha, S.-A. Hong, Y.-C. Lee, T.W. Lim, I.-H. Oh: Performance and lifetime analysis of the kW-class PEMFC stack, J. Power Sources 106, 295–303 (2002)

    Article  Google Scholar 

  68. I. Nazarov, K. Promislow: The impact of membrane constraint on PEM fuel cell water management, J. Electrochem. Soc. 154, B623–B630 (2007)

    Article  Google Scholar 

  69. C.J. Netwall, B.D. Gould, J.A. Rodgers, N.J. Nasello, K.E. Swider-Lyons: Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates, J. Power Sources 227, 137–144 (2013)

    Article  Google Scholar 

  70. R.K. Jain, H.C. Triandis: Management of Research and Development Organizations: Managing the Unmanageable, 2nd edn. (Wiley, New York 1997)

    Google Scholar 

  71. E. Sadeghia, N. Djilali, M. Bahrami: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: Hysteresis effect under cyclic compressive load, J. Power Sources 195, 8104–8109 (2010)

    Article  Google Scholar 

  72. O. Burheim, P.J.S. Vie, J.G. Pharoah, S. Kjelstrup: Ex-situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell, J. Power Sources 195, 249–256 (2010)

    Article  Google Scholar 

  73. M. Hamour, J.P. Garnier, J.C. Grandidier, A. Ouibrahim, S. Martemianov: Thermal-conductivity characterization of gas diffusion layer in proton exchange membrane fuel cells and electrolyzers under mechanical loading, Int. J. Thermophys. 32, 1025–1037 (2011)

    Article  Google Scholar 

  74. R. Zaffou, J.S. Yi, H.R. Kunz, J.M. Fenton: Temperature-driven water transport through membrane electrode assembly of proton exchange membrane fuel cells, Electrochem. Solid-State Lett. 9, A418–A422 (2006)

    Article  Google Scholar 

  75. K. Promislow, J. Stockie, B. Wetton: A sharp interface reduction for multiphase transport in a porous fuel cell electrode, Proc. R. Soc. A 462, 789–816 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  76. K. Promislow, B. Wetton: A simple, mathematical model of thermal coupling in fuel cell stacks, J. Power Sources 150, 129–135 (2005)

    Article  Google Scholar 

  77. E. Barsoukov, J.R. MacDonald (Eds.): Impedance Spectroscopy: Theory, Experiment and Applications, 2nd edn. (Wiley, New York 2005)

    Google Scholar 

  78. M.E. Orazem, B. Tribollet: Electrochemical Impedance Spectroscopy (Wiley, New York 2008)

    Book  Google Scholar 

  79. F.N. Büchi, A. Marek, G.G. Scherer: In-situ membrane resistance measurements in polymer electrolyte fuel cells by fast auxiliary current pulses, J. Electrochem. Soc. 142, 1895–1901 (1995)

    Article  Google Scholar 

  80. R. Mukundan, R.L. Borup: Visualising liquid water in PEM fuel cells using neutron imaging, Fuel Cells 9, 499–505 (2009)

    Article  Google Scholar 

  81. A. Isopo, F. Nobili, V.R. Albertini: Energy dispersive x-ray diffraction applied to laboratory investigation on proton exchange membrane water content in working fuel cells, Fuel Cells 12, 800–808 (2012)

    Article  Google Scholar 

  82. K. Tüber, D. Pócza, C. Hebling: Visualization of water buildup in the cathode of a transparent PEM fuel cell, J. Power Sources 124, 403–414 (2003)

    Article  Google Scholar 

  83. X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang: Visualization of liquid water transport in a PEFC, Electrochem. Solid-State Lett. 7, A408–A411 (2004)

    Article  Google Scholar 

  84. A.P. Young, J. Stumper, S. Knights, E. Gyenge: Ionomer degradation in polymer electrolyte membrane fuel cells, J. Electrochem. Soc. 157, B425–B436 (2010)

    Article  Google Scholar 

  85. G. Bender, M. Angelo, K. Bethune, S. Dorn, T. Thampan, R. Rocheleau: Method using gas chromatography to determine the molar flow balance for proton exchange membrane fuel cells exposed to impurities, J. Power Sources 193, 713–722 (2009)

    Article  Google Scholar 

  86. G.A. Schuler, A. Wokaun, F.N. Büchi: Local online gas analysis in PEFC using tracer gas concepts, J. Power Sources 195, 1647–1656 (2010)

    Article  Google Scholar 

  87. P.J.S. Vie, S. Kjelstrup: Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell, Electrochimica Acta 49, 1069–1077 (2004)

    Article  Google Scholar 

  88. M. Matian, A.J. Marquis, N.P. Brandon: Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells, Int. J. Hydrog. Energy 35, 12308–12316 (2010)

    Article  Google Scholar 

  89. S.S. Kocha, J.D. Yang, J.S. Yi: Characterization of gas crossover and its implications in PEM fuel cells, Am. Inst. Chem. Eng. J. 52, 1916–1925 (2006)

    Article  Google Scholar 

  90. W. Vielstich: Cyclic voltammetry. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 153–162

    Google Scholar 

  91. R.W. Lindström, K. Kortsdottir, M. Wesselmark, A. Oyarce, C. Lagergren, G. Lindbergh: Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: Temperature and humidity effects, J. Electrochem. Soc. 157, B1795–B1801 (2010)

    Article  Google Scholar 

  92. M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, Z. Ogumi: Gas crossover and membrane degradation in polymer electrolyte fuel cells, Electrochimica Acta 51, 5746–5753 (2006)

    Article  Google Scholar 

  93. T.V. Reshetenko, J. St-Pierre: PEMFC GDE oxygen mass transport coefficient separation with different gas diluents, Electrochem. Soc. Trans. 50(2), 549–555 (2012)

    Google Scholar 

  94. K. Broka, P. Ekdunge: Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem. 27, 117–123 (1997)

    Article  Google Scholar 

  95. K.-H. Choi, D.-H. Peck, C.S. Kim, D.-R. Shin, T.-H. Lee: Water transport in polymer membranes for PEMFC, J. Power Sources 86, 197–201 (2000)

    Article  Google Scholar 

  96. Z. Peng, A. Morin, P. Huguet, P. Schott, J. Pauchet: In-situ measurement of electroosmotic drag coefficient in nafion membrane for the PEMFC, J. Phys. Chem. B 115, 12835–12844 (2011)

    Article  Google Scholar 

  97. B. Wetton, J. St-Pierre: Liquid water scavenging of PEMFC contaminants, Electrochem. Soc. Trans. 50(2), 649–657 (2012)

    Google Scholar 

  98. J. St-Pierre: Section preface. In: Device and Materials Modeling in PEM Fuel Cells, ed. by S.J. Paddison, K.S. Promislow (Springer, Berlin, Heidelberg 2009) pp. 3–17

    Chapter  Google Scholar 

  99. G.-S. Kim, J. St-Pierre, K. Promislow, B. Wetton: Electrical coupling in proton exchange membrane fuel cell stacks, J. Power Sources 152, 210–217 (2005)

    Article  Google Scholar 

  100. P.A.C. Chang, J. St-Pierre, J. Stumper, B. Wetton: Flow distribution in proton exchange membrane fuel cell stacks, J. Power Sources 162, 340–355 (2006)

    Article  Google Scholar 

  101. P. Berg, A. Çağlar, K. Promislow, J. St-Pierre, B. Wetton: Electrical coupling in proton exchange membrane fuel cell stacks: Mathematical and computational modelling, IMA J. Appl. Math. 71, 241–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  102. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, J. Yu: Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources 79, 75–81 (1999)

    Article  Google Scholar 

  103. Z. Qi, A. Kaufman: Activation of low temperature PEM fuel cells, J. Power Sources 111, 181–184 (2002)

    Article  Google Scholar 

  104. Z. Xu, Z. Qi, A. Kaufman: Activation of proton-exchange membrane fuel cell via CO oxidation stripping, J. Power Sources 156, 281–283 (2006)

    Article  Google Scholar 

  105. H. Tomioka, Y. Hashimasa, N. Yoshimura, M. Akai, S. Watanabe: JARI standard single cell testing protocol, JARI Res. J. 28, 247–252 (2006)

    Google Scholar 

  106. Anonymous: Procedure for Performing PEM Single Cell Testing (Florida Solar Energy Center, Cocoa 2009)

    Google Scholar 

  107. T. Malkow, G. De Marco, A. Pilenga, M. Honselaar, G. Tsotridis, S. Escribano, L. Antoni, R. Reißner, O. Thalau, E. Sitters, G. Heinz: Testing the Voltage and the Power as a Function of the Current Density Following a Dynamic Profile Versus Time–Dynamic Load Cycling Ageing Test for a PEFC Single Cell, Test Module PEFC SC 5-7 (European Commission Joint Research Centre, Institute for Energy, Petten 2010)

    Google Scholar 

  108. G. Bender, M. Angelo, K. Bethune, R. Rocheleau: Quantitative analysis of the performance impact of low-level carbon monoxide exposure in proton exchange membrane fuel cells, J. Power Sources 228, 159–169 (2013)

    Article  Google Scholar 

  109. J. St-Pierre, D.P. Wilkinson, S. Knights, M.L. Bos: Relationships between water management, contamination and lifetime degradation in PEFC, J. New Mater. Electrochem. Syst. 3, 99–106 (2000)

    Google Scholar 

  110. J. St-Pierre, N. Jia: Successful demonstration of Ballard PEMFCs for space shuttle applications, J. New Mater. Electrochem. Syst. 5, 263–271 (2002)

    Google Scholar 

  111. S.D. Knights, K.M. Colbow, J. St-Pierre, D.P. Wilkinson: Aging mechanisms and lifetime, PEFC and DMFC, J. Power Sources 127, 127–134 (2004)

    Article  Google Scholar 

  112. J. Xie, D.L. Wood, D.M. Wayne, T.A. Zawodzinski, P. Atanassov, R.L. Borup: Durability of PEFCs at high humidity conditions, J. Electrochem. Soc. 152, A104–A113 (2005)

    Article  Google Scholar 

  113. S.J.C. Cleghorn, D.K. Mayfield, D.A. Moore, J.C. Moore, G. Rusch, T.W. Sherman, N.T. Sisofo, U. Beuscher: A polymer electrolyte fuel cell life test: 3 years of continuous operation, J. Power Sources 158, 446–454 (2006)

    Article  Google Scholar 

  114. D. Liu, S. Case: Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile, J. Power Sources 162, 521–531 (2006)

    Article  Google Scholar 

  115. R. Borup, J. Davey, F. Garzon, D. Wood, P. Welch, K. More: PEM fuel cell durability with transportation transient operation, Electrochem. Soc. Trans. 3(1), 879–886 (2006)

    Google Scholar 

  116. R. Lin, B. Li, Y.P. Hou, J.M. Ma: Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell, Int. J. Hydrog. Energy 34, 2369–2376 (2009)

    Article  Google Scholar 

  117. B. Li, R. Lin, D. Yang, J. Ma: Effect of driving cycle on the performance of PEM fuel cell and microstructure of membrane electrode assembly, Int. J. Hydrog. Energy 35, 2814–2819 (2010)

    Article  Google Scholar 

  118. X.-Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang: A review of polymer electrolyte membrane fuel cell durability test protocols, J. Power Sources 196, 9107–9116 (2011)

    Article  Google Scholar 

  119. S.J. Bae, S.-J. Kim, J.I. Park, C.W. Park, J.-H. Lee, I. Song, N. Lee, K.-B. Kim, J.-Y. Park: Lifetime prediction of a polymer electrolyte membrane fuel cell via an accelerated startup-shutdown cycle test, Int. J. Hydrog. Energy 37, 9775–9781 (2012)

    Article  Google Scholar 

  120. T.-C. Jao, G.-B. Jung, S.-C. Kuo, W.-J. Tzeng, A. Su: Degradation mechanism study of PTFE/Nafion membrane in MEA utilizing an accelerated degradation technique, Int. J. Hydrog. Energy 37, 13623–13630 (2012)

    Article  Google Scholar 

  121. T.H. Bradley, B.A. Moffitt, D.N. Mavris, T.F. Fuller, D.E. Parekh: Hardware-in-the-loop testing of a fuel cell aircraft powerplant, J. Propuls. Power 25, 1336–1344 (2009)

    Article  Google Scholar 

  122. H. Schulenburg, J. Durst, E. Müller, A. Wokaun, G.G. Scherer: Real surface area measurements of Pt3Co/C catalysts, J. Electroanal. Chem. 642, 52–60 (2010)

    Article  Google Scholar 

  123. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal. B 56, 9–35 (2005)

    Article  Google Scholar 

  124. S.S. Kocha: Principles of MEA preparation. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, New York 2003) pp. 538–565

    Google Scholar 

  125. F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 449–452

    Google Scholar 

  126. M.V. Williams, H.R. Kunz, J.M. Fenton: Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells, J. Electrochem. Soc. 152, A635–A644 (2005)

    Article  Google Scholar 

  127. F. Barbir: PEM Fuel Cells: Theory and Practice (Elsevier, Amsterdam 2005) pp. 45–47

    Google Scholar 

  128. T.R. Ralph, M.P. Hogarth: Catalysis for low temperature fuel cells Part I: The cathode challenges, Platin. Met. Rev. 46, 3–14 (2002)

    Google Scholar 

  129. D.R. Lide (Ed.): CRC Handbook of Chemistry and Physics, 89th edn. (CRC, Boca Raton 2008) p. 6-214

    Google Scholar 

  130. K. O’Neil, J.P. Meyers, R.M. Darling, M.L. Perry: Oxygen gain analysis for proton exchange membrane fuel cells, Int. J. Hydrog. Energy 37, 373–382 (2012)

    Article  Google Scholar 

  131. K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger: Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC, J. Electrochem. Soc. 153, A1955–A1963 (2006)

    Article  Google Scholar 

  132. J. Kim, S.-M. Lee, S. Srinivasan, C.E. Chamberlin: Modeling of proton-exchange membrane fuel-cell performance with an empirical-equation, J. Electrochem. Soc. 142, 2670–2674 (1995)

    Article  Google Scholar 

  133. G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, A. Patti: An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour, J. Appl. Electrochem. 29, 1449–1455 (1999)

    Article  Google Scholar 

  134. D. Chu, R. Jiang, C. Walker: Analysis of PEM fuel cell stacks using an empirical current-voltage equation, J. Appl. Electrochem. 30, 365–370 (2000)

    Article  Google Scholar 

  135. L. Pisani, G. Murgia, M. Valentini, B. D’Aguanno: A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power Sources 108, 192–203 (2002)

    Article  Google Scholar 

  136. A. Bard, L. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2000) pp. 383–388

    Google Scholar 

  137. K.R. Cooper, M. Smith: Electrical test methods for on-line fuel cell ohmic resistance measurement, J. Power Sources 160, 1088–1095 (2006)

    Article  Google Scholar 

  138. D. Malevich, E. Halliop, B.A. Peppley, J.G. Pharoah, K. Karan: Investigation of charge-transfer and mass-transport resistances in PEMFCs with microporous layer using electrochemical impedance spectroscopy, J. Electrochem. Soc. 156, B216–B224 (2009)

    Article  Google Scholar 

  139. Y. Zhai, K. Bethune, S. Dorn, G. Bender, R. Rocheleau: Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy, J. Electrochem. Soc. 159, B524–B530 (2012)

    Article  Google Scholar 

  140. J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet: CPE analysis by local electrochemical impedance spectroscopy, Electrochim. Acta 51, 1473–1479 (2006)

    Article  Google Scholar 

  141. A.J. Bard, L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2001) pp. 239–243

    Google Scholar 

  142. J. Wang: Analytical Electrochemistry, 3rd edn. (Wiley, New York 2006)

    Book  Google Scholar 

  143. Y. Sun, Y. Dai, Y. Liu, S. Chen: A rotating disk electrode study of the particle size effects of Pt for the hydrogen oxidation reaction, Phys. Chem. Chem. Phys. 14, 2278–2285 (2012)

    Article  Google Scholar 

  144. R.M. Darling, J.P. Meyers: Kinetic model of platinum dissolution in PEMFCs, J. Electrochem. Soc. 150, A1523–A1527 (2003)

    Article  Google Scholar 

  145. Y. Gu, J. St-Pierre, A. Joly, R. Goeke, A. Datye, P. Atanassov: Aging Studies of Pt/glassy carbon model electrocatalysts, J. Electrochem. Soc. 156, B485–B492 (2009)

    Article  Google Scholar 

  146. H. Xu, R. Kunz, J.M. Fenton: Investigation of platinum oxidation in PEM fuel cells at various relative humidities, Electrochem. Solid-State Lett. 10, B1–B5 (2007)

    Article  Google Scholar 

  147. K.R. Cooper: In-situ PEM fuel cell: Fuel crossover and electrical short circuit measurement, Fuel Cells 8, 34–35 (2008)

    Google Scholar 

  148. K.-H. Hauer, R. Potthast, T. Wüster, D. Stolten: Magnetotomography – A new method for analysing fuel cell performance and quality, J. Power Sources 143, 67–74 (2005)

    Article  Google Scholar 

  149. S. Cleghorn, C.R. Derouin, M.S. Wilson, S. Gottesfeld: A printed circuit board approach to measuring current distribution in a fuel cell, J. Appl. Electrochem. 28, 663–672 (1998)

    Article  Google Scholar 

  150. J. Stumper, S.A. Campbell, D.P. Wilkinson, M.C. Johnson, M. Davis: In-situ methods for the determination of current distributions in PEM fuel cells, Electrochimica Acta 43, 3773–3783 (1998)

    Article  Google Scholar 

  151. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, P. Lund: Measurement of current distribution in a free-breathing PEMFC, J. Power Sources 106, 304–312 (2002)

    Article  Google Scholar 

  152. N. Rajalakshmi, M. Raja, K.S. Dhathathereyan: Evaluation of current distribution in a proton exchange membrane fuel cell by segmented cell approach, J. Power Sources 112, 331–336 (2002)

    Article  Google Scholar 

  153. M.M. Mench, C.Y. Wang: An in-situ method for determination of current distribution in PEM fuel cells applied to a direct methanol fuel cell, J. Electrochem. Soc. 150, A79–A85 (2003)

    Article  Google Scholar 

  154. D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesivic, N. Vasileiadis, A. Kucernak: Localized impedance measurements along a single channel of a solid polymer fuel cell, Electrochem. Solid-State Lett. 6, A63–A66 (2003)

    Article  Google Scholar 

  155. C. Wieser, A. Helmbold, E. Gülzow: A new technique for two-dimensional current distribution measurements in electrochemical cells, J. Appl. Electrochem. 30, 803–807 (2000)

    Article  Google Scholar 

  156. G. Bender, M.S. Wilson, T.A. Zawodzinski: Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. Power Sources 123, 163–171 (2003)

    Article  Google Scholar 

  157. A.B. Geiger, R. Eckl, A. Wokaun, G.G. Scherer: An approach to measuring locally resolved currents in polymer electrolyte fuel cells, J. Electrochem. Soc. 151, A394–A398 (2004)

    Article  Google Scholar 

  158. A. Hakenjos, C. Hebling: Spatially resolved measurement of PEM fuel cells, J. Power Sources 145, 307–311 (2005)

    Article  Google Scholar 

  159. I.A. Schneider, H. Kuhn, A. Wokaun, G.G. Scherer: Fast locally resolved electrochemical impedance spectroscopy in polymer electrolyte fuel cells, J. Electrochem. Soc. 152, A2092–A2103 (2005)

    Article  Google Scholar 

  160. A. Pozio, R.F. Silva, M. De Francesco, L. Giorgi: Nafion degradation in PEFCs from end plate iron contamination, Electrochimica Acta 48, 1543–1549 (2003)

    Article  Google Scholar 

  161. D.E. Curtin, R.D. Lousenberg, T.J. Henry, P.C. Tangeman, M.E. Tisack: Advanced materials for improved PEMFC performance and life, J. Power Sources 131, 41–48 (2004)

    Article  Google Scholar 

  162. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten: Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources 176, 444–451 (2008)

    Article  Google Scholar 

  163. H.-S. Oh, J.-G. Oh, S. Haam, K. Arunabha, B. Roh, I. Hwang, H. Kim: On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells, Electrochem. Commun. 10, 1048–1051 (2008)

    Article  Google Scholar 

  164. M.S. Angelo, J. St-Pierre, K.P. Bethune, R.E. Rocheleau: Gas chromatography study of reactions of carbon monoxide at different operating temperatures within a PEMFC, Electrochem. Soc. Trans. 35(32), 167–178 (2011)

    Google Scholar 

  165. E.A. Müller, F. Kolb, L. Guzzella, A.G. Stefanopoulou, D.A. McKay: Correlating nitrogen accumulation with temporal fuel cell performance, J. Fuel Cell Sci. Technol. 7, 021013 (2010)

    Article  Google Scholar 

  166. B.S. Pivovar: An overview of electro-osmosis in fuel cell polymer electrolytes, Polymer 47, 4194–4202 (2006)

    Article  Google Scholar 

  167. U. Beuscher: Experimental method to determine the mass transport resistance of a polymer electrolyte fuel cell, J. Electrochem. Soc. 153, A1788–A1793 (2006)

    Article  Google Scholar 

  168. J. St-Pierre, B. Wetton, G.-S. Kim, K. Promislow: Limiting current operation of proton exchange membrane fuel cells, J. Electrochem. Soc. 154, B186–B193 (2007)

    Article  Google Scholar 

  169. D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy: Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods, J. Electrochem. Soc. 156, B991–B1003 (2009)

    Article  Google Scholar 

  170. J. St-Pierre: Hydrogen mass transport in fuel cell gas diffusion electrodes, Fuel Cells 11, 263–273 (2011)

    Article  Google Scholar 

  171. A.J. Bard, L.R. Faulkner: Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York 2001) pp. 335–353

    Google Scholar 

  172. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons: Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts, J. Electrochem. Soc. 154, B670–B675 (2007)

    Article  Google Scholar 

  173. Y. Garsany, O. Baturina, K.E. Swider-Lyons, S.S. Kocha: Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction, Anal. Chem. 82, 6321–6328 (2010)

    Article  Google Scholar 

  174. Y. Garsany, I.L. Singer, K.E. Swider-Lyons: Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts, J. Electroanal. Chem. 662, 396–406 (2011)

    Article  Google Scholar 

  175. D.A. Schiraldi: Perfluorinated polymer electrolyte membrane durability, Polym. Rev. 46, 315–327 (2006)

    Google Scholar 

  176. M. Doyle, G. Rajendran: Perfluorinated membranes. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 351–395

    Google Scholar 

  177. K.R. Cooper: Progress toward accurate through-plane ion transport resistance measurement of thin solid electrolytes, J. Electrochem. Soc. 157, B1731–B1739 (2010)

    Article  Google Scholar 

  178. Z. Siroma, T. Ioroi, N. Fujiwara, K. Yasuda: Proton conductivity along interface in thin cast film of Nafion, Electrochem. Commun. 4, 143–145 (2002)

    Article  Google Scholar 

  179. J. Li, K.G. Wilmsmeyer, L.A. Madsen: Anisotropic diffusion and morphology in perfluorosulfonate ionomers investigated by NMR, Macromolecules 42, 255–262 (2009)

    Article  Google Scholar 

  180. G. Velayutham: Effect of micro-layer PTFE on the performance of PEM fuel cell electrodes, Int. J. Hydrog. Energy 36, 14845–14850 (2011)

    Article  Google Scholar 

  181. D.J. Burnett, A.R. Garcia, F. Thielmann: Measuring moisture sorption and diffusion kinetics on proton exchange membranes using a gravimetric vapor sorption apparatus, J. Power Sources 160, 426–430 (2006)

    Article  Google Scholar 

  182. B. Ren, X.-B. Lian, J.-F. Li, P.-P. Fang, Q.-P. Lai, Z.-Q. Tian: Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy, Faraday Discuss. 140, 155–165 (2009)

    Article  Google Scholar 

  183. R.J.K. Wiltshire, C.R. King, A. Rose, P.P. Wells, M.P. Hogarth, D. Thompsett, A.E. Russell: PEM fuel cell for in-situ XAS studies, Electrochimica Acta 50, 5208–5217 (2005)

    Article  Google Scholar 

  184. V. Croze, F. Ettingshausen, J. Melke, M. Soehn, D. Stuermer, C. Roth: The use of in-situ X-ray absorption spectroscopy in applied fuel cell research, J. Appl. Electrochem. 40, 877–883 (2010)

    Article  Google Scholar 

  185. M. Heinen, Z. Jusys, R.J. Behm: Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: An in-situ ATR-FTIRS flow cell study, J. Phys. Chem. C 114, 9850–9864 (2010)

    Article  Google Scholar 

  186. J.R. Anderson: Structure of Metal Catalysts (Academic, New York 1975)

    Google Scholar 

  187. L.A. Kibler, D.M. Kolb: Structure sensitive methods: AFM/STM. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 266–278

    Google Scholar 

  188. R. Alink, D. Gerteisen, W. Mérida: Investigating the water transport in porous media for PEMFCs by liquid water visualization in ESEM, Fuel cells 11, 481–488 (2011)

    Article  Google Scholar 

  189. K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M. Arenz: Fuel cell catalyst degradation on the nanoscale, Electrochem. Commun. 10, 1144–1147 (2008)

    Article  Google Scholar 

  190. Z.Y. Liu, J.L. Zhang, P.T. Yu, J.X. Zhang, R. Makharia, K.L. More, E.A. Stach: Transmission electron microscopy observation of corrosion behaviors of platinized carbon blacks under thermal and electrochemical conditions, J. Electrochem. Soc. 157, B906–B913 (2010)

    Article  Google Scholar 

  191. R.R. Adžić, J.X. Wang, B.M. Ocko, J. McBreen: EXAFS, XANES, SXS. In: Handbook of Fuel Cells, Vol. 2, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 279–301

    Google Scholar 

  192. M.F. Mathias, J. Roth, J. Fleming, W. Lehnert: Diffusion media materials and characterisation. In: Handbook of Fuel Cells, Vol. 3, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York 2003) pp. 517–537

    Google Scholar 

  193. N.L. Garland, J.P. Kopasz: The United States Department of Energy’s high temperature, low relative humidity membrane program, J. Power Sources 172, 94–99 (2007)

    Article  Google Scholar 

  194. E.D. Wachsman, K.T. Lee: Lowering the temperature of solid oxide fuel cells, Science 334, 935–939 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

St-Pierre, J. et al. (2017). Modern Fuel Cell Testing Laboratory. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics