Skip to main content

Summary

  • Chapter
  • First Online:
  • 409 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We summarize the developments of STEERB model and give the comparison of several radiation belt kinetic models of different research groups.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert JM, Bortnik J (2009) Nonlinear interaction of radiation belt electrons with electromagnetic ion cyclotron waves. Geophys Res Lett 36(L12):110. doi:10.1029/2009GL038904

    Google Scholar 

  • Albert JM, Meredith NP, Horne RB (2009) Three-dimensional diffusion simulation of outer radiation belt electrons during the october 9, 1990, magnetic storm. J Geophys Res 114(A09):214. doi:10.1029/2009JA014336

  • Beutier T, Boscher D (1995) A three-dimensional analysis of the electron radiation belt by the salammbô code. J Geophys Res 100:14853–14862. doi:10.1029/94JA03066

    Article  Google Scholar 

  • Beutier T, Boscher D, France M (1995) Salammbo: a three-dimensional simulation of the proton radiation belt. J Geophys Res 100:17181–17188. doi:10.1029/94JA02728

    Article  Google Scholar 

  • Bortnik J, Thorne RM, Inan US (2008) Nonlinear interaction of energetic electrons with large amplitude chorus. Geophys Res Lett 35(L21):102. doi:10.1029/2008GL035500

    Google Scholar 

  • Bourdarie S, Boscher D, Beutier T, Sauvaud J, Blanc M (1997) Electron and proton radiation belt dynamic simulations during storm periods: a new asymmetric convection-diffusion model. J Geophys Res 102:17541–17552. doi:10.1029/97JA01305

    Article  Google Scholar 

  • Cattell C, Wygant JR, Goetz K, Kersten K, Kellogg PJ, von Rosenvinge T, Bale SD, Roth I, Temerin M, Hudson MK, Mewaldt RA, Wiedenbeck M, Maksimovic M, Ergun R, Acuna M, Russell CT (2008) Discovery of very large amplitude whistler-mode waves in Earth’s radiation belts. Geophys Res Lett 35(L01):105. doi:10.1029/2007GL032009

  • Cully CM, Bonnell JW, Ergun RE (2008) THEMIS observations of long-lived regions of large-amplitude whistler waves in the inner magnetosphere. Geophys Res Lett 35:L17S16. doi:10.1029/2008GL033643

  • Degeling AW, Ozeke LG, Rankin R, Mann IR, Kabin K (2008) Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves. J Geophys Res 113(A02):208. doi:10.1029/2007JA012411

    Google Scholar 

  • Fok M-C, Horne RB, Meredith NP, Glauert SA (2008) Radiation belt environment model: application to space weather nowcasting. J Geophys Res 113(A12):A03S08. doi:10.1029/2007JA012558

  • Fok MC, Glocer A, Zheng Q, Horne RB, Meredith NP, Albert JM, Nagai T (2010) Recent developments in the radiation belt environment model. J Atmos Sol-Terr Phys 73:1435–1443. doi:10.1016/j.jastp.2010.09.033

  • Friedel RHW, Reeves GD, Obara T (2002) Relativistic electron dynamics in the inner magnetosphere—a review. J Atmos Sol-Terr Phys 64:265–282. doi:10.1016/S1364-6826(01)00088-8

  • Hilmer RV, Voigt G (1995) A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters. J Geophys Res 100:5613–5626. doi:10.1029/94JA03139

    Article  Google Scholar 

  • Jordanova VK, Miyoshi Y (2005) Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys Res Lett 32(L14):104. doi:10.1029/2005GL023020

    Google Scholar 

  • Li X, Roth I, Temerin M, Wygant JR, Hudson MK, Blake JB (1993) Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys Res Lett 20:2423–2426. doi:10.1029/93GL02701

    Article  Google Scholar 

  • Maynard NC, Chen AJ (1975) Isolated cold plasma regions—observations and their relation to possible production mechanisms. J Geophys Res 80:1009–1013. doi:10.1029/JA080i007p01009

    Article  Google Scholar 

  • Saito S, Miyoshi Y, Seki K (2010) A split in the outer radiation belt by magnetopause shadowing: test particle simulations. J Geophys Res 115(A08):210. doi:10.1029/2009JA014738

    Google Scholar 

  • Sarris TE, Li X, Tsaggas N, Paschalidis N (2002) Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. J Geophys Res 107:1033. doi:10.1029/2001JA900166

    Article  Google Scholar 

  • Shprits YY, Subbotin D, Ni B (2009) Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J Geophys Res 114(A11):209. doi:10.1029/2008JA013784

    Google Scholar 

  • Su Z, Zheng H, Wang S (2009a) Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model. J Geophys Res 114(A07):201. doi:10.1029/2008JA014013

  • Su Z, Zheng H, Wang S (2009b) Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections. J Geophys Res 114(A08):202. doi:10.1029/2009JA014269

  • Su Z, Zheng H, Xiong M (2009c) Dynamic evolution of outer radiation belt electrons due to whistler-mode chorus. Chinese Phys Lett 26(039):401

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2010a) STEERB: a three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res 115(A09):208. doi:10.1029/2009JA015210

    Google Scholar 

  • Su Z, Zheng H, Wang S (2010b) A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus. J Geophys Res 115(A05):219. doi:10.1029/2009JA014759

    Google Scholar 

  • Su Z, Zheng H, Wang S (2010c) Three dimensional simulations of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection. J Geophys Res 115(A06):203. doi:10.1029/2009JA014980

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2011a) CRRES observation and STEERB simulation of the 9 (October 1990) electron radiation belt dropout event. Geophys Res Lett 38(L06):106. doi:10.1029/2011GL046873

  • Su Z, Xiao F, Zheng H, Wang S (2011b) Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res 116(A04):205. doi:10.1029/2010JA016228

  • Su Z, Zheng H, Chen L, Wang S (2011c) Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion. J Atmos Sol-Terr Phys 73:95–105. doi:10.1016/j.jastp.2009.08.002

    Article  Google Scholar 

  • Subbotin D, Shprits Y, Ni B (2010) Three-dimensional VERB radiation belt simulations including mixed diffusion. J Geophys Res 115(A03):205. doi:10.1029/2009JA015070

    Google Scholar 

  • Subbotin DA, Shprits YY (2009) Three-dimensional modeling of the radiation belts using the versatile electron radiation belt (VERB) code. Space Weather 7(S10):001. doi:10.1029/2008SW000452

    Google Scholar 

  • Tao X, Thorne RM, Li W, Ni B, Meredith NP, Horne RB (2011) Evolution of electron pitch angle distributions following injection from the plasma sheet. J Geophys Res 116(A4):A04,229

    Google Scholar 

  • Thorne RM (2010) Radiation belt dynamics: the importance of wave-particle interactions. Geophys Res Lett 37(L22):107. doi:10.1029/2010GL044990

    Google Scholar 

  • Thorne RM, Ni B, Tao X, Horne RB, Meredith NP (2010) Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467:943. doi:10.1038/nature09467

    Article  Google Scholar 

  • Tsyganenko NA, Sitnov MI (2005) Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res 110(A03):208. doi:10.1029/2004JA010798

    Google Scholar 

  • Ukhorskiy AY, Anderson BJ, Brandt PC, Tsyganenko NA (2006) Storm time evolution of the outer radiation belt: transport and losses. J Geophys Res 111:A11S03. doi:10.1029/2006JA011690

  • Varotsou A, Boscher D, Bourdarie S, Horne RB, Glauert SA, Meredith NP (2005) Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett 32(L19):106. doi:10.1029/2005GL023282

    Google Scholar 

  • Varotsou A, Boscher D, Bourdarie S, Horne RB, Meredith NP, Glauert SA, Friedel RH (2008) Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res 113(A12):212. doi:10.1029/2007JA012862

    Google Scholar 

  • Volland H (1973) A semiempirical model of large-scale magnetospheric electric fields. J Geophys Res 78:171–180. doi:10.1029/JA078i001p00171

    Article  Google Scholar 

  • Weimer DR (2001) An improved model of ionospheric electric potentials including substorm perturbations and application to the geospace environment modeling November 24, 1996, event. J Geophys Res 106:407C416. doi:10.1029/2000JA000604

  • Xiao F, Su Z, Zheng H, Wang S (2009) Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res 114(A03):201. doi:10.1029/2008JA013580

    Google Scholar 

  • Xiao F, Chen L, Su Z, Zheng H, Wang S (2010a) A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves. J Geophys Res 115(A10):217. doi:10.1029/2010JA015374

  • Xiao F, Su Z, Zheng H, Wang S (2010b) Three-dimensional simulations of outer radiation belt electron dynamics including cross diffusion terms. J Geophys Res 115(A05):216. doi:10.1029/2009JA014541

    Google Scholar 

  • Xiao F, Chen L, He Y, Su Z, Zheng H (2011) Modeling of precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J Atmos Sol-Terr Phys 73:106–111. doi:10.1016/j.jastp.2010.01.007

    Article  Google Scholar 

  • Yoon PH (2011) Large-amplitude whistler waves and electron acceleration. Geophys Res Lett 381(L12):105. doi:10.1029/2011GL047893

    Google Scholar 

  • Zheng Q, Fok M, Albert J, Horne RB, Meredith NP (2011) Effects of energy and pitch angle mixed diffusion on radiation belt electrons. J Atmos Sol-Terr Phys 73:785–795. doi:10.1016/j.jastp.2011.01.014

    Article  Google Scholar 

  • Zheng Y, Fok M-C, Khazanov GV (2003) A radiation belt-ring current forecasting model. Space Weather 1:1013. doi:10.1029/2003SW000007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenpeng Su .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z. (2015). Summary. In: A Global Kinetic Model for Electron Radiation Belt Formation and Evolution. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46651-3_6

Download citation

Publish with us

Policies and ethics