Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Magnetospheric convection corresponds to the magnetic and electric drifts of radiation belt electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birn J, Thomsen MF, Borovsky JE, Reeves GD, McComas DJ, Belian RD, Hesse M (1998) Substorm electron injections: Geosynchronous observations and test particle simulations. J Geophys Res 103:9235–9248. doi:10.1029/97JA02635

    Article  Google Scholar 

  • Bourdarie S, Boscher D, Beutier T, Sauvaud J, Blanc M (1997) Electron and proton radiation belt dynamic simulations during storm periods: a new asymmetric convection-diffusion model. J Geophys Res 102:17541–17552. doi:10.1029/97JA01305

    Article  Google Scholar 

  • Brautigam DH, Albert JM (2000) Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res 105:291–310. doi:10.1029/1999JA900344

    Article  Google Scholar 

  • Degeling AW, Ozeke LG, Rankin R, Mann IR, Kabin K (2008) Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves. J Geophys Res 113(A02):208. doi:10.1029/2007JA012411

    Google Scholar 

  • Fok M-C, Moore TE (1997) Ring current modeling in a realistic magnetic field configuration. Geophys Res Lett 24:1775–1778. doi:10.1029/97GL01255

    Article  Google Scholar 

  • Fok M-C, Moore TE, Kozyra JU, Ho GC, Hamilton DC (1995) Three-dimensional ring current decay model. J Geophys Res 100:9619–9632. doi:10.1029/94JA03029

    Article  Google Scholar 

  • Fok M-C, Moore TE, Spjeldvik WN (2001) Rapid enhancement of radiation belt electron fluxes due to substorm dipolarization of the geomagnetic field. J Geophys Res 106:3873–3882. doi:10.1029/2000JA000150

  • Fok, M-C, Horne RB, Meredith NP, Glauert SA (2008) Radiation belt environment model: application to space weather nowcasting. J Geophys Res 113(A12):A03S08. doi:10.1029/2007JA012558

  • Fok M-C, Buzulukova N, Chen S-H, Valek PW, Goldstein J, McComas DJ (2010) Simulation and TWINS observations of the 22 July 2009 storm. J Geophys Res 115(A12):231. doi:10.1029/2010JA015443

    Google Scholar 

  • Fok M-C, Moore TE, Slinker SP, Fedder JA, Delcourt DC, Nosé M, Chen S-H (2011) Modeling the superstorm in November 2003. J Geophys Res 116:A00J17. doi:10.1029/2010JA015720

  • Friedel RHW, Korth A, Kremser G (1996) Substorm onsets observed by CRRES: determination of energetic particle source regions. J Geophys Res 101:13137–13154. doi:10.1029/96JA00399

    Article  Google Scholar 

  • Green JC, Kivelson MG (2004) Relativistic electrons in the outer radiation belt: differentiating between acceleration mechanisms. J Geophys Res 109(A03):213. doi:10.1029/2003JA010153

    Google Scholar 

  • Hilmer RV, Voigt G (1995) A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters. J Geophys Res 100:5613–5626. doi:10.1029/94JA03139

    Article  Google Scholar 

  • Horne RB, Thorne RM, Shprits YY, Meredith NP, Glauert SA, Smith AJ, Kanekal SG, Baker DN, Engebretson MJ, Posch JL, Spasojevic M, Inan US, Pickett JS, Decreau PME (2005) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230. doi:10.1038/nature03939

    Article  Google Scholar 

  • Jordanova VK, Miyoshi Y (2005) Relativistic model of ring current and radiation belt ions and electrons: initial results. Geophys Res Lett 32(L14):104. doi:10.1029/2005GL023020

    Google Scholar 

  • Jordanova VK, Kistler LM, Kozyra JU, Khazanov GV, Nagy AF (1996) Collisional losses of ring current ions. J Geophys Res 101:111–126. doi:10.1029/95JA02000

    Article  Google Scholar 

  • Jordanova VK, Kozyra JU, Nagy AF, Khazanov GV (1997) Kinetic model of the ring current-atmosphere interactions. J Geophys Res 102:14279–14292. doi:10.1029/96JA03699

    Article  Google Scholar 

  • Jordanova VK, Boonsiriseth A, Thorne RM, Dotan Y (2003) Ring current asymmetry from global simulations using a high-resolution electric field model. J Geophys Res 108:1443. doi:10.1029/2003JA009993

    Article  Google Scholar 

  • Jordanova VK, Albert J, Miyoshi Y (2008) Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J Geophys Res 113:A00A10. doi:10.1029/2008JA013239

  • Jordanova VK, Zaharia S, Welling DT (2010) Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J Geophys Res 115:A00J11. doi:10.1029/2010JA015671

  • Li X, Baker DN, Temerin M, Reeves GD, Belian RD (1998) Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms. Geophys Res Lett 25:3763–3766. doi:10.1029/1998GL900001

  • Maynard NC, Chen AJ (1975) Isolated cold plasma regions—observations and their relation to possible production mechanisms. J Geophys Res 80:1009–1013. doi:10.1029/JA080i007p01009

    Article  Google Scholar 

  • McIlwain CE (1974) Substorm injection boundaries. In: McCormac BM (ed) Magnetospheric physics, pp 143–154

    Google Scholar 

  • Miyoshi Y, Morioka A, Misawa H, Obara T, Nagai T, Kasahara Y (2003) Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. J Geophys Res 108:1004. doi:10.1029/2001JA007542

    Article  Google Scholar 

  • Miyoshi YS, Jordanova VK, Morioka A, Thomsen MF, Reeves GD, Evans DS, Green JC (2006) Observations and modeling of energetic electron dynamics during the October 2001 storm. J Geophys Res 111:A11S02. doi:10.1029/2005JA011351

  • Reeves GD, Henderson MG, McLachlan PS, Belian RD, Friedel RHW, Korth A (1996) Radial propagation of substorm injections. In: Rolfe EJ, Kaldeich B (ed) International conference on substorms, ESA special publication, vol 389, pp 579–584

    Google Scholar 

  • Roederer JG (1970) Dynamics of geomagnetically trapped radiation. Springer, New York

    Google Scholar 

  • Sarris TE, Li X, Tsaggas N, Paschalidis N (2002) Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds. J Geophys Res 107:1033. doi:10.1029/2001JA900166

    Article  Google Scholar 

  • Schulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts, in physics and chemistry in space, vol 7. Springer, New York

    Book  Google Scholar 

  • Shprits YY, Thorne RM, Friedel R, Reeves GD, Fennell J, Baker DN, Kanekal SG (2006a) Outward radial diffusion driven by losses at magnetopause. J Geophys Res 111(A11):214. doi:10.1029/2006JA011657

    Google Scholar 

  • Shprits YY, Thorne RM, Horne RB, Glauert SA, Cartwright M, Russell CT, Baker DN, Kanekal SG (2006b) Acceleration mechanism responsible for the formation of the new radiation belt during the (2003) halloween solar storm. Geophys Res Lett 33(L05):104. doi:10.1029/2005GL024256

    Google Scholar 

  • Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J Comput Phys 83:32. doi:10.1016/0021-9991(89)90222-2

    Article  Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2010a) STEERB: a three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res 115(A09):208. doi:10.1029/2009JA015210

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2010b) Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles. J Geophys Res 115(A10):249. doi:10.1029/2010JA015903

    Google Scholar 

  • Su Z, Xiao F, Zheng H, Wang S (2011a) CRRES observation and STEERB simulation of the 9 (October 1990) electron radiation belt dropout event. Geophys Res Lett 38(L06):106. doi:10.1029/2011GL046873

  • Su Z, Xiao F, Zheng H, Wang S (2011b) Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res 116(A04):205. doi:10.1029/2010JA016228

  • Summers D, Thorne RM, Xiao F (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103(20):487

    Google Scholar 

  • Thorne RM, O’Brien TP, Shprits YY, Summers D, Horne RB (2005) Timescale for MeV electron microburst loss during geomagnetic storms. J Geophys Res 110(A09):202. doi:10.1029/2004JA010882

    Google Scholar 

  • Volland H (1973) A semiempirical model of large-scale magnetospheric electric fields. J Geophys Res 78:171–180. doi:10.1029/JA078i001p00171

    Article  Google Scholar 

  • Zaharia S, Birn J, Friedel RHW, Reeves GD, Thomsen MF, Cheng CZ (2004) Substorm injection modeling with nondipolar, time-dependent background field. J Geophys Res 109(A10):211. doi:10.1029/2004JA010464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenpeng Su .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z. (2015). Magnetospheric Convection. In: A Global Kinetic Model for Electron Radiation Belt Formation and Evolution. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46651-3_5

Download citation

Publish with us

Policies and ethics