Skip to main content

Experiment and Result of Precise Kinematic Orbit Determination for LEO Satellite

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume I

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 340))

  • 5474 Accesses

Abstract

Function for LEO kinematic orbit determination was developed and integrated into the SPODS software, which has been designed and developed at Xi’an Research Institute of Surveying and Mapping. This paper presents briefly the principle and method adopted such as observation model, error correction and parameter estimation. Since there are so many epoch-related unknown parameters, the position coordinates and clock offset of onboard receiver, an approach of Least-Square method with parameter pre-eliminating is employed for parameter estimation in data processing. A set of GPS data of GRACE-A/B during Sept. 01–09 2012 was collected and experiments were carried out to evaluate the performance. The result exhibits that, by comparing with the post precise orbit product (GNV1B) from JPL, the accuracy for R component is 0.03–0.05 m, while for T and N components are 0.02–0.04 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montenbruck O, Gill E (2001) Satellite orbits models, methods, and applications. Springer, Berlin

    Google Scholar 

  2. Li J, Zhang S, Zhou X et al (2009) Precise orbit determination for GRACE with zero-difference kinematic method. Chin Sci Bull 64(16):2355–2362

    Google Scholar 

  3. Yunck TP, Bertiger WI, Wu SC et al (1994) First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. Geophys Res Lett 21(7):541–544

    Article  Google Scholar 

  4. Qing X (2009) Research on precision orbit determination theory and method of low earth orbiter based on GPS technique. Information Engineering University, Zhengzhou, p 166

    Google Scholar 

  5. Svehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv Geosci 2003(1):47–56

    Article  Google Scholar 

  6. Xu T, Jiang N, Sun Z (2013) Research on dynamic orbit smoothing based on kinematic orbit of GOE. Geomat Sci Eng 33(1):16–20

    Google Scholar 

  7. Schutz BE, Tapley BD, Abusali PAM et al (1994) Dynamic orbit determination using GPS measurements from TOPEX/POSEiDON. Geophys Res Lett 21(19):2179–2182

    Article  Google Scholar 

  8. Bock H, Jaggi A, Svehla D et al (2007) Precise orbit determination for the GOCE satellite using GPS. Adv Space Res 2007(39):1638–1647

    Article  Google Scholar 

  9. Svehla D, Rothacher M (2005) Kinematic positioning of LEO and GPS satellites and IGS stations on the ground. Adv Space Res 2005(36):376–381

    Article  Google Scholar 

  10. Visser PNAM, Ijssel JVD (2003) Aiming at 1-cm orbit for low earth orbiters: reduced-dynamic and kinematic precise orbit determination. Space Sci Rev 108:27–36

    Google Scholar 

  11. Zhang X, Li P, Zuo X (2013) Kinematic precise orbit determination based ambiguity-fixed PPP. Geomat Inf Sci Wuhan Univ 38(9):1009–1013

    Google Scholar 

  12. Ruan R, Jia X, Wu X et al (2014) SPODS software and its result of precise orbit determination for GNSS satellites. In: China satellite navigation conference (CSNC) 2014 proceedings, vol III, Nanjing, pp 301–312

    Google Scholar 

  13. Wei Z, Ruan R, Jia X et al (2014) Satellite positioning and orbit determination system SPODS: theory and test. Acta Geodaetica Cartogr Sin 43(1):1–4

    Google Scholar 

  14. Kleusberg A, Teunissen PJG (eds) (1996) GPS for geodesy. Springer, Berlin, p 407

    Google Scholar 

  15. Kouba JA (2003) Guide to using international GPS service (IGS) products, p 31. ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf. Accessed 15 Sept 2008

  16. Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

    Article  Google Scholar 

  17. Bierman GJ (1977) Factorization methods for discrete sequential estimation. Academic Press, New York, p 241

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengui Ruan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruan, R., Feng, L., Wu, X. (2015). Experiment and Result of Precise Kinematic Orbit Determination for LEO Satellite. In: Sun, J., Liu, J., Fan, S., Lu, X. (eds) China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume I. Lecture Notes in Electrical Engineering, vol 340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46638-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46638-4_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46637-7

  • Online ISBN: 978-3-662-46638-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics