Advertisement

Abstract

An approach for semantic interoperability among heterogeneous systems is to assist with the integration of foundational ontologies. In order to achieve this, we have selected three popular foundational ontologies DOLCE, BFO, and GFO, and their related modules. We perform ontology mediation (alignment, mapping, and merging) on these ontologies by aligning their ontology entities using tools, documentation, and our manual alignments, and comparing their effectiveness. Thereafter, based on the alignments, we created mappings in the ontology files resulting and merged ontologies. However, during the mapping process, it was found that structural differences in foundational ontologies, caused by conflicting axioms due to complement and disjointness, and incompatible domain and range restriction, cause logical inconsistencies in foundational ontology alignments, thereby reducing the number of mappings. In this paper, we present each phase of the mediation process, including the mediation issues we encountered with solutions where available.

Keywords

Foundational ontology Ontology mediation Semantic interoperability Ontology alignment Ontology mapping Ontology matching Ontology merging 

References

  1. 1.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31–12-2003) (2003). http://wonderweb.semanticweb.org
  2. 2.
    de Bruijn, J., Ehrig, M., Feier, C., Martíns-Recuerda, F., Scharffe, F., Weiten, M.: Ontology mediation, merging, and aligning. In: Davies, J., Studer, R., Warren, P. (eds.) Semantic Web Technologies, pp. 1–20. Wiley Online Library, Chichester (2006)Google Scholar
  3. 3.
    Herre, H.: General Formal Ontology (GFO): A foundational ontology for conceptual modelling. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 297–345. Springer, Netherlands (2010)CrossRefGoogle Scholar
  4. 4.
    Seyed, A.P.: BFO/DOLCE primitive relation comparison. In: The 12th Annual Bio-Ontologies Meeting Colocated with Intelligent Systems for Molecular Biology (ISMB’09). Stockholm, Sweden, 28 June 2009Google Scholar
  5. 5.
    Temal, L., Rosier, A., Dameron, O., Burgun, A.: Mapping BFO and DOLCE. Stud. Health Technol. Inform. 160(Pt 2), 1065–1069 (2010)Google Scholar
  6. 6.
    Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F., Rector, A., Rosse, C.: Relations in biomedical ontologies. Genome Biol. 6(5), 46 (2005)CrossRefGoogle Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 273–288. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Ngo, D.H., Bellahsene, Z.: YAM++: A multi-strategy based approach for ontology matching task. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 421–425. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Dang, T.T., Gabriel, A., Hertling, S., Roskosch, P., Wlotzka, M., Zilke, J.R., Janssen, F., Paulheim, H.: HotMatch results for OEAI 2012. In: Seventh International Workshop on Ontology Matching (OM’12). CEUR Workshop Proceedings, vol. 946. http://CEUR-WS.org (2012)
  11. 11.
    Hertling, S.: Hertuda results for OEAI 2012. In: Seventh International Workshop on Ontology Matching (OM’12). CEUR Workshop Proceedings, vol. 946. http://CEUR-WS.org (2012)
  12. 12.
    Kolli, R., Doshi, P.: OPTIMA: tool for ontology alignment with application to semantic reconciliation of sensor metadata for publication in SensorMap. In: IEEE International Conference on Semantic Computing (ICSC’08), pp. 484–485. IEEE, SantaClara, 4–7 August 2008Google Scholar
  13. 13.
    Castano, S., Ferrara, A., Montanelli, S.: H-MATCH: an algorithm for dynamically matching ontologies in peer-based systems. In: The First International Workshop on Semantic Web and Databases (SWDB’03), pp. 231–250. Humboldt-Universitt, Berlin (2003)Google Scholar
  14. 14.
    Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pp. 450–455. AAAI Press (2000)Google Scholar
  15. 15.
    Khan, Z., Keet, C.M.: ONSET: automated foundational ontology selection and explanation. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 237–251. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Keet, C.M.: Detecting and revising flaws in OWL object property expressions. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 252–266. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Second International Conference on Formal Ontology in Information Systems (FOIS’01), pp.17–19. IOS Press Ogunquit, October 2001Google Scholar
  18. 18.
    Mizoguchi, R.: YAMATO: yet another more advanced top-level ontology. In: Proceedings of the Sixth Australasian Ontology Workshop. Conferences in Research and Practice in Information, pp. 1–16. ACS, Sydney (2010)Google Scholar
  19. 19.
    Khan, Z.C., Keet, C.M.: The foundational ontology library ROMULUS. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 200–211. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mathematics, Statistics, and Computer Science, UKZN/CSIR-Meraka Centre for Artificial Intelligence ResearchUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.University of Cape TownCape TownSouth Africa

Personalised recommendations