Advertisement

Multilevel Self-organization in Smart Environment: Approach and Major Technologies

  • Alexander Smirnov
  • Nikolay ShilovEmail author
  • Alexey Kashevnik
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 454)

Abstract

Efficient operation of complex distributed systems such as smart environments requires development of self-organisation mechanisms. However, uncontrolled self-organization can often lead to wrong results. The paper proposes solving this problem through the “top-to-bottom” configuration principle. A reference model for a smart environment member is proposed. The approach is illustrated via a museum smart environment case study. It is then extended with introducing a recommending system based on the developed smart environment architecture.

Keywords

Smart environment Multi-level self-organization Service-oriented architecture Recommending system 

Notes

Acknowledgements

The research presented is motivated by a joint project between SPIIRAS and Nokia Research Center. Some parts of the work have been sponsored by grants # 12-07-00298, # 12-07-00302, # 13-07-13159, and # 13-07-12095 of the Russian Foundation for Basic Research, project # 213 of the research program “Intelligent information technologies, mathematical modelling, system analysis and automation” of the Russian Academy of Sciences, and project 2.2 “Methodology development for building group information and recommendation systems” of the basic research program “Intelligent information technologies, system analysis and automation” of the Nanotechnology and Information technology Department of the Russian Academy of Sciences.

References

  1. 1.
    Smirnov, A., Kashevnik, A., Shilov, N., Oliver, I., Boldyrev, S., Balandin, S.: Profile-based context aware smart spaces. In Proceedings of the XII International symposium on problems of redundancy in information and control systems, pp. 249–253 (2009)Google Scholar
  2. 2.
    Serugendo, G.D.M., Gleizes, M.-P., Karageorgos, A.: Self-organisation and emergence in MAS: an overview. Informatica 30, 45–54 (2006)zbMATHGoogle Scholar
  3. 3.
    Ambient Networks Phase 2. Integrated Design for Context, Network and Policy Management, Deliverable D10.-D1, 2006. http://www.ambient-networks.org/Files/deliverables/D10-D.1_PU.pdf. Accessed 18 April 2007
  4. 4.
    Hofkirchner, W.: Emergence and the logic of explanation. an argument for the unity of science. Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 91, 23–30 (1998)Google Scholar
  5. 5.
    Fuchs, C.: Globalization and Self-Organization in the Knowledge-Based Society. TripleC 1(2), 105–169 (2003). http://triplec.uti.at Google Scholar
  6. 6.
    Hackman, J.R.: The design of work teams. In: Lorch, J.W. (ed.) Handbook of Organizational Behavior, p. 1987. Prentice Hall, Upper Saddle River (1987)Google Scholar
  7. 7.
    Telenor. R&D Report, Project No TFPFAN, Program Peer-to-peer computing. http://www.telenor.com/rd/pub/rep03/R_17_2003.pdf. Accessed 18 April 2007
  8. 8.
    De Mola, F., Quitadamo, R.: Towards an agent model for future autonomic communications. In: Proceedings of the 7th WOA 2006 Workshop From Objects to Agents. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-204/P07.pdf. Accessed 25 March 2013
  9. 9.
    Smirnov, A., Shilov N., Kashevnik, A.: Multilevel self-organization in smart environment: service-oriented approach. In: Proceedings of International Conference on Knowledge Management and Information Sharing (KMIS 2013), pp. 290–297 (2013)Google Scholar
  10. 10.
    ITO Project S3. Scalable Self-Organizing Simulations, 2000. http://www.dimacs.rutgers.edu/Projects/Simulations/darpa/. Accessed 25 March 2013
  11. 11.
    Institute for Rexconfigurable Smart Components. Self-Organizing Sensor Networks. http://www.eng.auburn.edu/users/lim/sensit.html. Accessed 25 March 2013
  12. 12.
    Waterford Institute of Technology. Self Orches-trating CommunIty ambiEnT IntelligEnce Spaces, 2013. http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=11486081. Accessed 25 March 2013
  13. 13.
    SENSEI. Integrating the physical with the digital world of the network of the future. http://www.sensei-project.eu/. Accessed 25 March 2013
  14. 14.
    SOCRATES. Self-Optimisation and self-ConfiguRATion in wirelEss networkS. http://www.fp7-socrates.org/. Accessed 25 March 2013
  15. 15.
    Johannesson, P., Andersson, B., Bergholtz, M., Weigand, H.: Enterprise modelling for value based service analysis. In: Stirna, J., Persson, A. (eds.) The Practice of Enterprise Modeling. LNBIP, vol. 15, pp. 153–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Balandin, S., Moltchanov, D., Koucheryavy, Y.: Smart spaces and next generation wired/wireless networking. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) Smart Spaces and Next Generation Wired/Wireless Networking. LNCS, vol. 5764. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Smirnov, A., Kashevnik, A., Shilov, N.: Ontology matching in context-driven collaborative recommending systems. In: Proceedings of International Conference on Knowledge Management and Information Sharing (KMIS 2012), pp. 139–144 (2012)Google Scholar
  18. 18.
    Uschold, M., Grüninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(2), 93–155 (1996)CrossRefGoogle Scholar
  19. 19.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput.aware applications. In: Moran J. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  20. 20.
    Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for suppor-ting the rapid prototyping of context-aware applications. In: Moran, T.P., et al. (eds.) Context-aware Computing. A Special Triple Issue of Human-Computer Interaction, vol. 16, pp. 229–241 (2001)Google Scholar
  21. 21.
    Raz, D., Juhola, A.T., Serrat-Fernandez, J., Galis, A.: Fast and Efficient Context-Aware Services. Willey, London (2006)CrossRefGoogle Scholar
  22. 22.
    Honkola, J., Laine, H., Brown, R., Tyrkkö, O.: Smart-M3 information sharing platform. In: The 1st Inernational Workshop on Semantic Interoperability for Smart Spaces (SISS 2010) in Conjunction with IEEE ISCC 2010 (2010)Google Scholar
  23. 23.
    Smart-M3 at Wikipedia. http://en.wikipedia.org/wiki/Smart-M3. Accessed 25 March 2013
  24. 24.
    Smart-M3 at Sourceforge. http://sourceforge.net/projects/smart-m3. Accessed 25 March 2013
  25. 25.
    The Museum of Karl May Gym-nasium History. http://www.spiiras.nw.ru/modules.php?name=Content&pa=shshowpa&pid=8. Accessed 25 March 2013 (in Russian)
  26. 26.
    McCarthy, K., Salamo, M., Coyole, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: IUI 2006: Proceedings of the 11th International Conference on Intelligent User Interfaces. pp. 267–269 (2006)Google Scholar
  27. 27.
    Wang Y., Chan, S.C.-F. and Ngai, G.: Applicability of demographic recommender system to tourist attractions: a case study on TripAdvisor. In: Proceedings of 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 97–101. IEEE (2012)Google Scholar
  28. 28.
    Zhang, S., Zhang, R., Liu, X., Sun, H.: A Personalized trust-aware model for travelogue discovering. In: Proceedings of 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 112–116. IEEE (2012)Google Scholar
  29. 29.
    Garcia, I., Sebastia, L., Onaindia, E., Guzman, C.: A group recommender system for tourist activities. In: Di Noia, T., Buccafurri, F. (eds.) E-Commerce and Web Technologies. LNCS, vol. 5692. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Hornung, T., Koschmider, A., Oberweis, A.: A Recommender system for business process models. In: Proceedings of the 17th Annual Workshop on Information Technologies & Systems, WITS 2009. Electronic resource. http://ssrn.com/abstract=1328244. Accessed February 2012
  31. 31.
    Zhena, L., Huangb, G.Q., Jiang, Z.: Recommender system based on workflow. Decis. Support Syst. 48(1), 237–245 (2009). (Elsevier)CrossRefGoogle Scholar
  32. 32.
    Moon, S.K., Simpson, T.W., Kumara, S.R.T.: An agent-based recommender system for developing customized families of products. J. Intell. Manuf. 20(6), 649–659 (2009). (Springer)CrossRefGoogle Scholar
  33. 33.
    Chen, Y.-J., Chen, Y.-M., Wu, M.-S.: An expert recommendation system for product empirical knowledge consultation. In: The 3rd IEEE International Conference on Computer Science and Information Technology ICCSIT2010, pp. 23–27. IEEE (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexander Smirnov
    • 1
  • Nikolay Shilov
    • 1
    Email author
  • Alexey Kashevnik
    • 1
  1. 1.SPIIRASSt. PetersburgRussia

Personalised recommendations