Advertisement

Radiologic Imaging of Sports-Induced Brain Injuries

  • P. M. ParizelEmail author
  • J. Kremling
  • C. Janssen
  • S. Laurijssen
  • J. Van Goethem
  • J. Huyskens
  • F. De Belder
  • C. Venstermans
  • L. van den Hauwe
  • W. Van Hecke

Abstract

TBI can occur in a wide range of sports activities. Lesions are most commonly caused by impact (contact sports) or activities involving high velocity. Acute sports-related injuries are indistinguishable from head trauma sustained in other accidents. Recurring craniocerebral injuries, such as in sustained in contact sports, can lead to chronic traumatic encephalopathy (CTE). This condition is a tauopathy, which is caused by repetitive mild traumatic brain injury (mTBI). Players of contact sports, such as rugby, hockey, boxing, or American football, have an increased risk of acquiring this condition.

Imaging studies play an important role in the diagnosis, management, and follow-up of sports-related TBI. CT remains valuable for the detection of intracranial hemorrhage, skull fractures, and mass effect; unfortunately this technique is less sensitive for lesions such as diffuse axonal injury (DAI). Therefore, whenever there is a discrepancy between the clinical status of a patient and the CT findings, MRI should be used. MRI is becoming increasingly important for diagnosing parenchymal damage in sports-induced injuries. New sequences, such as susceptibility-weighted imaging (SWI), are very useful to detect microhemorrhagic foci. Diffusion-weighted imaging (DWI) and especially diffusion tensor imaging (DTI) provide quantitative measurements (such as FA, MD, ADC) which can be used as biomarkers for outcome prediction. Lower fractional anisotropy (FA) and high lesion count and volume have been related to poorer functional outcome. Other useful imaging modalities are 1H-magnetic resonance spectroscopy (1H-MRS), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET).

Keywords

Traumatic Brain Injury Apparent Diffusion Coefficient Fractional Anisotropy Diffusion Tensor Imaging Mean Diffusivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbas K, Shenk TE, Poole VN et al (2015) Alteration of Default Mode Network in High School Football Athletes Due to Repetitive Sub-concussive mTBI – A resting state fMRI study. Brain Connect 5(2):91–101Google Scholar
  2. Aquino C, Woolen S, Steenburg SD (2015) Magnetic resonance imaging of traumatic brain injury: a pictorial review. Emerg Radiol 22(1):65–78PubMedCrossRefGoogle Scholar
  3. Babikian T, Freier MC, Tong KA et al (2005) Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol 33(3):184–194PubMedCrossRefGoogle Scholar
  4. Baker EH, Basso G, Barker PB et al (2008) Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27(3):489–499PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bazarian JJ, Zhong J, Blyth B et al (2007) Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma 24(9):1447–1459. doi: 10.1089/neu.2007.0241 PubMedCrossRefGoogle Scholar
  6. Betz J, Zhuo J, Roy A et al (2012) Prognostic value of diffusion tensor imaging parameters in severe traumatic brain injury. J Neurotrauma 29(7):1292–1305. doi: 10.1089/neu.2011.2215 PubMedCrossRefGoogle Scholar
  7. Bigler ED (2013) Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci 7:395. doi: 10.3389/fnhum.2013.00395 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Borich M, Babul A, Huang PH et al (2014) Alterations in resting state brain networks in concussed adolescent athletes. J Neurotrauma. doi: 10.1089/neu.2013.3269 PubMedGoogle Scholar
  9. Boston University CTE Center John Grimsley. http://www.bu.edu/cte/our-research/case-studies/john-grimsley/. Accessed 22 Sept 2014
  10. Bramlett H, Dietrich WD 3rd (2014) Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurologic outcomes. J Neurotrauma [Epub ahead of print]Google Scholar
  11. Breedlove EL, Robinson M, Talavage TM et al (2012) Biomechanical correlates of symptomatic and asymptomatic neurophysiological impairment in high school football. J Biomech 45(7):1265–1272. doi: 10.1016/j.jbiomech.2012.01.034 PubMedCrossRefGoogle Scholar
  12. Browne GJ, Lam LT (2006) Concussive head injury in children and adolescents related to sports and other leisure physical activities. Br J Sports Med 40(2):163–168PubMedCentralPubMedCrossRefGoogle Scholar
  13. Burtscher IM, Holtås S (2001) Proton MR spectroscopy in clinical routine. J Magn Reson Imaging 13(4):560–567PubMedCrossRefGoogle Scholar
  14. Byrnes KR, Wilson CM, Brabazon F et al (2014) FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenergetics 5:13PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chamard E, Théoret H, Skopelja EN et al (2012) A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Neurosurg Focus 33(6):E4: 1–7Google Scholar
  16. Chang L, Tomasi D, Yakupov R et al (2004) Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 56(2):259–272. doi: 10.1002/ana.20190 PubMedCrossRefGoogle Scholar
  17. Chappell MH, Ulug AM, Zhang L et al (2006) Distribution of microstructural damage in the brains of professional boxers: a diffusion MRI study. J Magn Reson Imaging 24(3):537–542. doi: 10.1002/jmri.20656 PubMedCrossRefGoogle Scholar
  18. Chastain CA, Oyoyo UE, Zipperman M et al (2009) Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma 26(8):1183–1196. doi: 10.1089/neu.2008.0650 PubMedCrossRefGoogle Scholar
  19. Chen J, Johnston KM, Collie A et al (2007) A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry 78(11):1231–1238. doi: 10.1136/jnnp.2006.110395 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Chen J, Johnston KM, Petrides M et al (2008) Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry 65(1):81–89. doi: 10.1001/archgenpsychiatry.2007.8 PubMedCrossRefGoogle Scholar
  21. Cheng S, Liu Q, Lv Y et al (2014) Correlation of fractional anisotropy and metabolite concentrations measured using 1H-MRS of cerebral white matter in healthy adults. Biomed Mater Eng 24(6):3017–3024. doi: 10.3233/BME-141122 PubMedGoogle Scholar
  22. Chiaravalloti N, Hillary F, Ricker J et al (2005) Cerebral activation patterns during working memory performance in multiple sclerosis using FMRI. J Clin Exp Neuropsychol 27(1):33–54. doi: 10.1080/138033990513609 PubMedCrossRefGoogle Scholar
  23. Cimatti M (2006) Assessment of metabolic cerebral damage using proton magnetic resonance spectroscopy in mild traumatic brain injury. J Neurosurg Sci 50(4):83–88PubMedGoogle Scholar
  24. Coles JP (2007) Imaging after brain injury. Br J Anaesth 99(1):49–60PubMedCrossRefGoogle Scholar
  25. Convit A, de Asis J, de Leon MJ et al (2000) Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease. Neurobiol Aging 21(1):19–26PubMedCrossRefGoogle Scholar
  26. Coronado VG, McGuire LC, Sarmiento K et al (2012) Trends in Traumatic Brain Injury in the U.S. and the public health response: 1995–2009. J Safety Res 43(4):299–307. doi: 10.1016/j.jsr.2012.08.011 PubMedCrossRefGoogle Scholar
  27. Costanza A, Weber K, Gandy S et al (2011) Review: Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates. Neuropathol Appl Neurobiol 37(6):570–584PubMedCentralPubMedCrossRefGoogle Scholar
  28. Csernansky JG, Wang L, Swank J et al (2005) Preclinical detection of Alzheimer’s disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage 25(3):783–792. doi: 10.1016/j.neuroimage.2004.12.036 PubMedCrossRefGoogle Scholar
  29. Danielsen E, Ross BD (1999) Magnetic resonance spectroscopy diagnosis of neurological diseases. Marcel-Dekker, New YorkGoogle Scholar
  30. Dashnaw ML, Petraglia AL, Bailes JE (2012) An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg Focus 33(6):E5: 1–9. doi:  10.3171/2012.10.FOCUS12284
  31. Davie CA, Pirtosek Z, Barker GJ et al (1995) Magnetic resonance spectroscopic study of parkinsonism related to boxing. J Neurol Neurosurg Psychiatry 58(6):688–691PubMedCentralPubMedCrossRefGoogle Scholar
  32. de la Plata Marquez CD, Garces J, Shokri Kojori E et al (2011) Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Arch Neurol 68(1):74–84. doi: 10.1001/archneurol.2010.342 Google Scholar
  33. Marquez de la Plata C, Ardelean A, Koovakkattu D et al (2007) Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. J Neurotrauma 24(4):591–598. doi: 10.1089/neu.2006.0214 PubMedCrossRefGoogle Scholar
  34. de Leon MJ, Golomb J, George AE et al (1993) The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol 14(4):897–906PubMedGoogle Scholar
  35. Devanand DP, Pradhaban G, Liu X et al (2007) Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68(11):828–836. doi: 10.1212/01.wnl.0000256697.20968.d7 PubMedCrossRefGoogle Scholar
  36. Dimou S, Lagopoulos J (2014) Toward objective markers of concussion in sport: a review of white matter and neurometabolic changes in the brain after sports-related concussion. J Neurotrauma 31(5):413–424PubMedCrossRefGoogle Scholar
  37. Dodd AB, Epstein K, Ling JM et al (2014) Diffusion tensor imaging findings in semi-acute mild traumatic brain injury. J Neurotrauma 31(14):1235–1248. doi: 10.1089/neu.2014.3337 PubMedCrossRefGoogle Scholar
  38. Duarte JM, Lei H, Mlynárik V, Gruetter R (2012) The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 61(2):342–362PubMedCrossRefGoogle Scholar
  39. Eierud C, Craddock RC, Fletcher S et al (2014) Neuroimaging after mild traumatic brain injury: Review and meta-analysis. Neuroimage Clin 4:283–294. doi: 10.1016/j.nicl.2013.12.009 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Erlanger DM, Kutner KC, Barth JT et al (1999) Neuropsychology of sports-related head injury: Dementia Pugilistica to Post Concussion Syndrome. Clin Neuropsychol 13(2):193–209. doi: 10.1076/clin.13.2.193.1963 PubMedCrossRefGoogle Scholar
  41. Esopenko C, Levine B (2015) Aging, neurodegenerative disease and traumatic brain injury: the role of neuroimaging. J Neurotrauma 32(4):209–220PubMedCrossRefGoogle Scholar
  42. Ewing-Cobbs L, Prasad MR, Swank P et al (2008) Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. Neuroimage 42(4):1305–1315PubMedCentralPubMedCrossRefGoogle Scholar
  43. Farbota KD, Bendlin BB, Alexander AL et al (2012) Longitudinal diffusion tensor imaging and neuropsychological correlates in traumatic brain injury patients. Front Hum Neurosci 6:160PubMedCentralPubMedCrossRefGoogle Scholar
  44. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, AtlantaGoogle Scholar
  45. Fearing MA, Bigler ED, Wilde EA et al (2008) Morphometric MRI findings in the thalamus and brainstem in children after moderate to severe traumatic brain injury. J Child Neurol 23(7):729–737PubMedCrossRefGoogle Scholar
  46. Fleisher AS, Sun S, Taylor C et al (2008) Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology 70(3):191–199PubMedCrossRefGoogle Scholar
  47. Fontaine A, Azouvi P, Remy P et al (1999) Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology 53(9):1963–1968PubMedCrossRefGoogle Scholar
  48. Fox NC, Scahill RI, Crum WR et al (1999) Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 52(8):1687–1689PubMedCrossRefGoogle Scholar
  49. Galanaud D et al (2012) Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology 117:1300–1310PubMedCrossRefGoogle Scholar
  50. Gandy S, Ikonomovic MD, Mitsis E et al (2014) Chronic traumatic encephalopathy: clinical-biomarker correlations and current concepts in pathogenesis. Mol Neurodegener 9(1):37PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gardner A, Kay-Lambkin F, Stanwell P et al (2012) A systematic review of diffusion tensor imaging findings in sports-related concussion. J Neurotrauma 29(16):2521–2538PubMedCrossRefGoogle Scholar
  52. Gardner A, Iverson GL, Stanwell P (2014) A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion. J Neurotrauma 31(1):1–18PubMedCrossRefGoogle Scholar
  53. Gavett BE, Stern RA, McKee AC (2011) Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 30(1):179–188PubMedCentralPubMedCrossRefGoogle Scholar
  54. Geurts BH, Andriessen TM, Goraj BM, Vos PE (2012) The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj 26(12):1439–1450PubMedCrossRefGoogle Scholar
  55. Giza CC, Kutcher JS, Ashwal S et al (2013) Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 80(24):2250–2257PubMedCentralPubMedCrossRefGoogle Scholar
  56. Gonzalez PG, Walker MT (2011) Imaging modalities in mild traumatic brain injury and sports concussion. PM R 3(10 Suppl 2):S413–S424PubMedCrossRefGoogle Scholar
  57. Gordon KE, Dooley JM, Wood EP (2006) Descriptive epidemiology of concussion. Pediatr Neurol 34(5):376–378PubMedCrossRefGoogle Scholar
  58. Green R, Koshimori Y, Turner G (2010) Research digest. Understanding the organic basis of persistent complaints in mTBI: findings from functional and structural neuroimaging. Neuropsychol Rehabil 20(3):471–478PubMedCrossRefGoogle Scholar
  59. Green REA, Colella B, Maller JJ et al (2014) Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci 8:67PubMedCentralPubMedCrossRefGoogle Scholar
  60. Grossman EJ, Ge Y, Jensen JH et al (2012) Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma 29(13):2318–2327PubMedCentralPubMedCrossRefGoogle Scholar
  61. Guerriero RM, Proctor MR, Mannix R et al (2012) Epidemiology, trends, assessment and management of sport-related concussion in United States high schools. Curr Opin Pediatr 24(6):696–701PubMedCrossRefGoogle Scholar
  62. Haga KK, Khor YP, Farrall A et al (2009) A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging 30(3):353–363PubMedCrossRefGoogle Scholar
  63. Hampshire A, MacDonald A, Owen AM (2013) Hypoconnectivity and hyperfrontality in retired American football players. Sci Rep 3:2972. doi: 10.1038/srep02972 PubMedCrossRefGoogle Scholar
  64. Hart J, Kraut MA, Womack KB et al (2013) Neuroimaging of cognitive dysfunction and depression in aging retired National Football League players: a cross-sectional study. JAMA Neurol 70(3):326–335PubMedCentralPubMedCrossRefGoogle Scholar
  65. Hasiloglu ZI, Albayram S, Selcuk H et al (2011) Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers. AJNR Am J Neuroradiol 32(1):99–102PubMedGoogle Scholar
  66. Helmer KG, Pasternak O, Fredman E et al (2014) Hockey Concussion Education Project, Part 1. Susceptibility-weighted imaging study in male and female ice hockey players over a single season. J Neurosurg 120(4):864–872PubMedCentralPubMedCrossRefGoogle Scholar
  67. Henry LC, Tremblay S, Boulanger Y et al (2010) Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. J Neurotrauma 27(1):65–76PubMedCrossRefGoogle Scholar
  68. Henry LC, Tremblay J, Tremblay S et al (2011a) Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma 28(10):2049–2059PubMedCrossRefGoogle Scholar
  69. Henry LC, Tremblay S, Leclerc S et al (2011b) Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol 11:105PubMedCentralPubMedCrossRefGoogle Scholar
  70. Hillary FG, Schultheis MT, Challis BH et al (2003) Spacing of repetitions improves learning and memory after moderate and severe TBI. J Clin Exp Neuropsychol 25(1):49–58PubMedCrossRefGoogle Scholar
  71. Hulkower MB, Poliak DB, Rosenbaum SB et al (2013) A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 34(11):2064–2074PubMedCrossRefGoogle Scholar
  72. Hung R, Carroll LJ, Cancelliere C et al (2014) Systematic review of the clinical course, natural history, and prognosis for pediatric mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Arch Phys Med Rehabil 95(3 Suppl):S174–S191PubMedCrossRefGoogle Scholar
  73. Inglese M, Makani S, Johnson G et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103(2):298–303PubMedCrossRefGoogle Scholar
  74. Irimia A, Wang B, Aylward SR et al (2012) Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. Neuroimage Clin 1(1):1–17PubMedCentralPubMedCrossRefGoogle Scholar
  75. Iverson GL, Lovell MR, Smith S et al (2000) Prevalence of abnormal CT-scans following mild head injury. Brain Inj 14(12):1057–1061PubMedCrossRefGoogle Scholar
  76. Jack CR Jr, Petersen RC, Xu YC et al (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52(7):1397–1403PubMedCentralPubMedCrossRefGoogle Scholar
  77. Jacobs B, Beems T, van der Vliet TM et al (2011) Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited. J Neurotrauma 28(2):203–215PubMedCrossRefGoogle Scholar
  78. Johnson B, Gay M, Zhang K et al (2012a) The use of magnetic resonance spectroscopy in the subacute evaluation of athletes recovering from single and multiple mild traumatic brain injury. J Neurotrauma 29(13):2297–2304PubMedCentralPubMedCrossRefGoogle Scholar
  79. Johnson B, Zhang K, Gay M et al (2012b) Metabolic alterations in corpus callosum may compromise brain functional connectivity in MTBI patients: an 1H-MRS study. Neurosci Lett 509(1):5–8PubMedCentralPubMedCrossRefGoogle Scholar
  80. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43PubMedCentralPubMedCrossRefGoogle Scholar
  81. Johnston KM, Ptito A, Chankowsky J et al (2001) New frontiers in diagnostic imaging in concussive head injury. Clin J Sport Med 11(3):166–175PubMedCrossRefGoogle Scholar
  82. Kang BK, Na DG, Ryoo JW et al (2001) Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol 2(4):183–191PubMedCentralPubMedCrossRefGoogle Scholar
  83. Kantarci K, Reynolds G, Petersen RC et al (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24(5):843–849PubMedGoogle Scholar
  84. Kantarci K, Weigand SD, Petersen RC et al (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28(9):1330–1339PubMedCentralPubMedCrossRefGoogle Scholar
  85. Kapoor V, McCook BM, Torok FS (2004) An introduction to PET-CT imaging. Radiographics 24(2):523–543. doi: 10.1148/rg.242025724 PubMedCrossRefGoogle Scholar
  86. Karantzoulis S, Randolph C (2013) Modern chronic traumatic encephalopathy in retired athletes: what is the evidence? Neuropsychol Rev 23(4):350–360. doi: 10.1007/s11065-013-9243-4 PubMedCrossRefGoogle Scholar
  87. Kaut KP, DePompei R, Kerr J et al (2003) Reports of head injury and symptom knowledge among college athletes: implications for assessment and educational intervention. Clin J Sport Med 13(4):213–221PubMedCrossRefGoogle Scholar
  88. Keightley ML, Sinopoli KJ, Davis KD et al (2014) Is there evidence for neurodegenerative change following traumatic brain injury in children and youth? A scoping review. Front Hum Neurosci 8:139. doi: 10.3389/fnhum.2014.00139 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Kiraly M, Kiraly SJ (2007) Traumatic brain injury and delayed sequelae: a review–traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia. Scientific World Journal 7:1768–1776. doi: 10.1100/tsw.2007.269 PubMedCrossRefGoogle Scholar
  90. Kirov II, Tal A, Babb JS et al (2013) Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. J Neurol 260(1):242–252. doi: 10.1007/s00415-012-6626-z PubMedCentralPubMedCrossRefGoogle Scholar
  91. Koerte IK, Ertl-Wagner B, Reiser M et al (2012) White matter integrity in the brains of professional soccer players without a symptomatic concussion. JAMA 308(18):1859–1861. doi: 10.1001/jama.2012.13735 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Kumar R, Gupta RK, Husain M et al (2009a) Comparative evaluation of corpus callosum DTI metrics in acute mild and moderate traumatic brain injury: its correlation with neuropsychometric tests. Brain Inj 23(7):675–685. doi: 10.1080/02699050903014915 PubMedCrossRefGoogle Scholar
  93. Kumar R, Husain M, Gupta RK et al (2009b) Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. J Neurotrauma 26(4):481–495. doi: 10.1089/neu.2008.0461 PubMedCrossRefGoogle Scholar
  94. LaBotz M, Martin MR, Kimura IF et al (2005) A comparison of a preparticipation evaluation history form and a symptom-based concussion survey in the identification of previous head injury in collegiate athletes. Clin J Sport Med 15(2):73–78PubMedCrossRefGoogle Scholar
  95. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378PubMedCrossRefGoogle Scholar
  96. Larrabee GJ, Rohling ML (2013) Neuropsychological differential diagnosis of mild traumatic brain injury. Behav Sci Law 31(6):686–701. doi: 10.1002/bsl.2087 PubMedCrossRefGoogle Scholar
  97. Le TH, Gean AD (2009) Neuroimaging of traumatic brain injury. Mt Sinai J Med 76(2):145–162PubMedCrossRefGoogle Scholar
  98. Lee H, Wintermark M, Gean AD et al (2008) Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3 T MRI. J Neurotrauma 25(9):1049–1056PubMedCrossRefGoogle Scholar
  99. Levin B, Bhardwaj A (2014) Chronic traumatic encephalopathy: a critical appraisal. Neurocrit Care 20(2):334–344. doi: 10.1007/s12028-013-9931-1 PubMedCrossRefGoogle Scholar
  100. Levin HS, Benavidez DA, Verger-Maestre K et al (2000) Reduction of corpus callosum growth after severe traumatic brain injury in children. Neurology 54(3):647–653PubMedCrossRefGoogle Scholar
  101. Lin A, Rothman DL (2014) What have novel imaging techniques revealed about metabolism in the aging brain? Future Neurol 9(3):341–354PubMedCentralPubMedCrossRefGoogle Scholar
  102. Lin AP, Shic F, Enriquez C et al (2003) Reduced glutamate neurotransmission in patients with Alzheimer’s disease – an in vivo (13)C magnetic resonance spectroscopy study. MAGMA 16(1):29–42PubMedCrossRefGoogle Scholar
  103. Liu J, Kou Z, Tian Y (2014) Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques. Neural Regen Res 9(12):1222–1230PubMedCentralPubMedCrossRefGoogle Scholar
  104. Ljungqvist J, Nilsson D, Ljungberg M et al (2011) Longitudinal study of the diffusion tensor imaging properties of the corpus callosum in acute and chronic diffuse axonal injury. Brain Inj 25(4):370–378. doi: 10.3109/02699052.2011.558038 PubMedCrossRefGoogle Scholar
  105. Maller JJ, Thomson RHS, Lewis PM et al (2010) Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. Brain Res Rev 64(1):213–240. doi: 10.1016/j.brainresrev.2010.04.003 PubMedCrossRefGoogle Scholar
  106. Martland HS (1928) Punch Drunk. JAMA 91(15):1103. doi: 10.1001/jama.1928.02700150029009 CrossRefGoogle Scholar
  107. Maugans TA, Farley C, Altaye M et al (2012) Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics 129(1):28–37. doi: 10.1542/peds.2011-2083 PubMedCentralPubMedCrossRefGoogle Scholar
  108. Mayer AR, Mannell MV, Ling J et al (2009) Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Hum Brain Mapp 30(12):4152–4166. doi: 10.1002/hbm.20836 PubMedCentralPubMedCrossRefGoogle Scholar
  109. McAllister TW, Saykin AJ, Flashman LA et al (1999) Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology 53(6):1300–1308PubMedCrossRefGoogle Scholar
  110. McCrea M, Hammeke T, Olsen G et al (2004) Unreported concussion in high school football players: implications for prevention. Clin J Sport Med 14(1):13–17PubMedCrossRefGoogle Scholar
  111. McCrory P, Meeuwisse WH, Aubry M et al (2013) Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport, Zurich, November 2012. J Athl Train 48(4):554–575. doi: 10.4085/1062-6050-48.4.05 PubMedCentralPubMedCrossRefGoogle Scholar
  112. McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68(7):709–735PubMedCentralPubMedCrossRefGoogle Scholar
  113. McKee AC, Stern RA, Nowinski CJ et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain 136(Pt 1):43–64PubMedCentralPubMedCrossRefGoogle Scholar
  114. Mendez CV, Hurley RA, Lassonde M et al (2005) Mild traumatic brain injury: neuroimaging of sports-related concussion. J Neuropsychiatry Clin Neurosci 17(3):297–303. doi: 10.1176/appi.neuropsych.17.3.297 PubMedCrossRefGoogle Scholar
  115. Merkley TL, Bigler ED, Wilde EA et al (2008) Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. J Neurotrauma 25(11):1343–1345. doi: 10.1089/neu.2008.0615 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Messé A, Caplain S, Paradot G et al (2011) Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp 32(6):999–1011. doi: 10.1002/hbm.21092 PubMedCrossRefGoogle Scholar
  117. Meythaler JM, Peduzzi JD, Eleftheriou E et al (2001) Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 82(10):1461–1471PubMedCrossRefGoogle Scholar
  118. Mez J, Stern RA, McKee AC (2013) Chronic traumatic encephalopathy: where are we and where are we going? Curr Neurol Neurosci Rep 13(12):407. doi: 10.1007/s11910-013-0407-7 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Mittal S, Wu Z, Neelavalli J et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30(2):232–252PubMedCentralPubMedCrossRefGoogle Scholar
  120. Mittl RL, Grossman RI, Hiehle JF et al (1994) Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol 15(8):1583–1589PubMedGoogle Scholar
  121. Moen KG, Skandsen T, Folvik M et al (2012) A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry 83(12):1193–1200. doi: 10.1136/jnnp-2012-302644 PubMedCrossRefGoogle Scholar
  122. Moritani T, Ekholm S, Westesson P (2009) Diffusion-weighted MR imaging of the brain, 2nd edn. Springer, Dordrecht/New YorkCrossRefGoogle Scholar
  123. Mountford CE, Stanwell P, Lin A et al (2010) Neurospectroscopy: the past, present and future. Chem Rev 110(5):3060–3086PubMedCrossRefGoogle Scholar
  124. Nakamura T, Hillary FG, Biswal BB (2009) Resting network plasticity following brain injury. PLoS One 4(12):e8220. doi: 10.1371/journal.pone.0008220 PubMedCentralPubMedCrossRefGoogle Scholar
  125. NFL Enterprises LLC John Grimsley. http://www.nfl.com/player/johngrimsley/2500933/careerstats. Accessed 22 Sept 2014
  126. Ng K, Mikulis DJ, Glazer J et al (2008) Magnetic resonance imaging evidence of progression of subacute brain atrophy in moderate to severe traumatic brain injury. Arch Phys Med Rehabil 89(12 Suppl):S35–S44. doi: 10.1016/j.apmr.2008.07.006 PubMedCrossRefGoogle Scholar
  127. Niogi SN, Mukherjee P (2010) Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil 25(4):241–255. doi: 10.1097/HTR.0b013e3181e52c2a PubMedCrossRefGoogle Scholar
  128. Noble JM, Hesdorffer DC (2013) Sport-related concussions: a review of epidemiology, challenges in diagnosis, and potential risk factors. Neuropsychol Rev 23(4):273–284PubMedCrossRefGoogle Scholar
  129. Omalu B, Bailes J, Hamilton RL et al (2011) Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery 69(1):173–183PubMedCrossRefGoogle Scholar
  130. Papa L, Ramia MM, Kelly JM et al (2013) Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma 30(5):324–338PubMedCrossRefGoogle Scholar
  131. Parizel PM, Özsarlak Ö, Van Goethem JW, van den Hauwe L, Dillen C, Verlooy J, Cosyns P, De Schepper AM (1998) Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol 8:960–965PubMedCrossRefGoogle Scholar
  132. Parizel PM, Makkat S, Van Miert E, Van Goethem JW, van den Hauwe L, De Schepper AM (2001) Intracranial hemorrhage: principles of CT and MRI interpretation. Eur Radiol 11:1770–1783PubMedCrossRefGoogle Scholar
  133. Perlstein WM, Cole MA, Demery JA et al (2004) Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. J Int Neuropsychol Soc 10(5):724–741. doi: 10.1017/S1355617704105110 PubMedGoogle Scholar
  134. Pierallini A, Pantano P, Fantozzi LM et al (2000) Correlation between MRI findings and long-term outcome in patients with severe brain trauma. Neuroradiology 42(12):860–867PubMedCrossRefGoogle Scholar
  135. Porto L, Jurcoane A, Magerkurth J et al (2011) Morphometry and diffusion MR imaging years after childhood traumatic brain injury. Eur J Paediatr Neurol 15(6):493–501. doi: 10.1016/j.ejpn.2011.06.004 PubMedCrossRefGoogle Scholar
  136. Practice parameter: the management of concussion in sports (summary statement). Report of the Quality Standards Subcommittee (1997) Neurology 48(3):581–585Google Scholar
  137. Ryan LM, Warden DL (2003) Post concussion syndrome. Int Rev Psychiatry 15(4):310–316. doi: 10.1080/09540260310001606692 PubMedCrossRefGoogle Scholar
  138. Saulle M, Greenwald BD (2012) Chronic traumatic encephalopathy: a review. Rehabil Res Pract 2012:816069. doi: 10.1155/2012/816069 PubMedCentralPubMedGoogle Scholar
  139. Schwarz A (2008) 12 Athletes Leaving Brains to Concussion Study. http://www.nytimes.com/2008/09/24/sports/football/24concussions.html?_r=2&hp&oref=slogin&. Accessed 22 Sept 2014
  140. Selassie AW, Wilson DA, Pickelsimer EE et al (2013) Incidence of sport-related traumatic brain injury and risk factors of severity: a population-based epidemiologic study. Ann Epidemiol 23(12):750–756PubMedCentralPubMedCrossRefGoogle Scholar
  141. Serra-Grabulosa J, Junque C, Verger K et al (2005) Cerebral correlates of declarative memory dysfunctions in early traumatic brain injury. J Neurol Neurosurg Psychiatry 76(1):129–131. doi: 10.1136/jnnp.2004.027631 PubMedCentralPubMedCrossRefGoogle Scholar
  142. Sharp DJ, Scott G, Leech R (2014) Network dysfunction after traumatic brain injury. Nat Rev Neurol 10(3):156–166PubMedCrossRefGoogle Scholar
  143. Shenton ME, Hamoda HM, Schneiderman JS et al (2012) A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav 6(2):137–192. doi: 10.1007/s11682-012-9156-5 PubMedCentralPubMedCrossRefGoogle Scholar
  144. Sidaros A, Engberg AW, Sidaros K et al (2008) Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain 131(Pt 2):559–572. doi: 10.1093/brain/awm294 PubMedCrossRefGoogle Scholar
  145. Slobounov SM, Gay M, Zhang K et al (2011) Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage 55(4):1716–1727. doi: 10.1016/j.neuroimage.2011.01.024 PubMedCentralPubMedCrossRefGoogle Scholar
  146. Slobounov SM, Gay M, Johnson B et al (2012) Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav 6(2):224–243. doi: 10.1007/s11682-012-9167-2 PubMedCrossRefGoogle Scholar
  147. Song S, Sun S, Ramsbottom MJ et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436PubMedCrossRefGoogle Scholar
  148. Sosin DM, Sniezek JE, Thurman DJ (1996) Incidence of mild and moderate brain injury in the United States, 1991. Brain Inj 10(1):47–54PubMedCrossRefGoogle Scholar
  149. Spanos GK, Wilde EA, Bigler ED et al (2007) cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. AJNR Am J Neuroradiol 28(3):537–542PubMedGoogle Scholar
  150. Spitz G, Maller JJ, Ng A et al (2013) Detecting lesions after traumatic brain injury using susceptibility weighted imaging: a comparison with fluid-attenuated inversion recovery and correlation with clinical outcome. J Neurotrauma 30(24):2038–2050PubMedCrossRefGoogle Scholar
  151. Stoub TR, Bulgakova M, Leurgans S et al (2005) MRI predictors of risk of incident Alzheimer disease: a longitudinal study. Neurology 64(9):1520–1524. doi: 10.1212/01.WNL.0000160089.43264.1A PubMedCrossRefGoogle Scholar
  152. Strangman GE, O’Neil-Pirozzi TM, Supelana C et al (2012) Fractional anisotropy helps predicts memory rehabilitation outcome after traumatic brain injury. NeuroRehabilitation 31(3):295–310. doi: 10.3233/NRE-2012-0797 PubMedGoogle Scholar
  153. Suskauer SJ, Huisman TA (2009) Neuroimaging in pediatric traumatic brain injury: current and future predictors of functional outcome. Dev Disabil Res Rev 15(2):117–123PubMedCentralPubMedCrossRefGoogle Scholar
  154. Talavage TM, Nauman EA, Breedlove EL et al (2014) Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 31(4):327–338. doi: 10.1089/neu.2010.1512 PubMedCentralPubMedCrossRefGoogle Scholar
  155. Tasker RC, Salmond CH, Westland AG et al (2005) Head circumference and brain and hippocampal volume after severe traumatic brain injury in childhood. Pediatr Res 58(2):302–308. doi: 10.1203/01.PDR.0000169965.08854.25 PubMedCrossRefGoogle Scholar
  156. Tasker RC, Westland AG, White DK et al (2010) Corpus callosum and inferior forebrain white matter microstructure are related to functional outcome from raised intracranial pressure in child traumatic brain injury. Dev Neurosci 32(5–6):374–384. doi: 10.1159/000316806 PubMedGoogle Scholar
  157. Toledo E, Lebel A, Becerra L et al (2012) The young brain and concussion: imaging as a biomarker for diagnosis and prognosis. Neurosci Biobehav Rev 36(6):1510–1531PubMedCentralPubMedCrossRefGoogle Scholar
  158. Tong KA, Ashwal S, Holshouser BA et al (2004) Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol 56(1):36–50PubMedCrossRefGoogle Scholar
  159. Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29(1):9–17PubMedCrossRefGoogle Scholar
  160. Tremblay S, de Beaumont L, Henry LC et al (2013) Sports concussions and aging: a neuroimaging investigation. Cereb Cortex 23(5):1159–1166. doi: 10.1093/cercor/bhs102 PubMedCrossRefGoogle Scholar
  161. Trivedi MA, Ward MA, Hess TM et al (2007) Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J Neurotrauma 24(5):766–771. doi: 10.1089/neu.2006.0205 PubMedCentralPubMedCrossRefGoogle Scholar
  162. Vagnozzi R, Signoretti S, Tavazzi B et al (2008) Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes--part III. Neurosurgery 62(6):1286–1295; discussion 1295–1296. doi: 10.1227/01.neu.0000333300.34189.74
  163. Vagnozzi R, Signoretti S, Cristofori L et al (2010) Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 133(11):3232–3242. doi: 10.1093/brain/awq200 PubMedCrossRefGoogle Scholar
  164. Vagnozzi R, Signoretti S, Floris R et al (2013) Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. J Head Trauma Rehabil 28(4):284–292. doi: 10.1097/HTR.0b013e3182795045 PubMedCrossRefGoogle Scholar
  165. Verger K, Junque C, Levin HS et al (2001) Correlation of atrophy measures on MRI with neuropsychological sequelae in children and adolescents with traumatic brain injury. Brain Inj 15(3):211–221. doi: 10.1080/02699050010004059 PubMedCrossRefGoogle Scholar
  166. Wilde EA, Hunter JV, Newsome MR et al (2005) Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 22(3):333–344. doi: 10.1089/neu.2005.22.333 PubMedCrossRefGoogle Scholar
  167. Wilde EA, Chu Z, Bigler ED et al (2006) Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma 23(10):1412–1426. doi: 10.1089/neu.2006.23.1412 PubMedCrossRefGoogle Scholar
  168. Wilde EA, Bigler ED, Hunter JV et al (2007) Hippocampus, amygdala, and basal ganglia morphometrics in children after moderate-to-severe traumatic brain injury. Dev Med Child Neurol 49(4):294–299. doi: 10.1111/j.1469-8749.2007.00294.x PubMedCrossRefGoogle Scholar
  169. Williamson IJ, Goodman D (2006) Converging evidence for the under-reporting of concussions in youth ice hockey. Br J Sports Med 40(2):128–132PubMedCentralPubMedCrossRefGoogle Scholar
  170. Xiong K, Zhu Y, Zhang W (2014) Diffusion tensor imaging and magnetic resonance spectroscopy in traumatic brain injury: a review of recent literature. Brain Imaging Behav. doi: 10.1007/s11682-013-9288-2 PubMedGoogle Scholar
  171. Xu J, Rasmussen I, Lagopoulos J et al (2007) Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 24(5):753–765PubMedCrossRefGoogle Scholar
  172. Yang J, Phillips G, Xiang H et al (2008) Hospitalisations for sport-related concussions in US children aged 5 to 18 years during 2000–2004. Br J Sports Med 42(8):664–669PubMedCrossRefGoogle Scholar
  173. Yates PA, Villemagne VL, Ellis KA et al (2013) Cerebral microbleeds: a review of clinical, genetic, and neuroimaging associations. Front Neurol 4:205PubMedCentralGoogle Scholar
  174. Yokobori S, Hosein K, Burks S et al (2013) Biomarkers for the clinical differential diagnosis in traumatic brain injury–a systematic review. CNS Neurosci Ther 19(8):556–565PubMedCrossRefGoogle Scholar
  175. Yuh EL, Mukherjee P, Lingsma HF et al (2013) Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol 73(2):224–235PubMedCentralPubMedCrossRefGoogle Scholar
  176. Yuh EL, Cooper SR, Mukherjee P et al (2014) Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: a TRACK-TBI study. J Neurotrauma 31(17):1457–1477. doi: 10.1089/neu.2013.3171 PubMedCentralPubMedCrossRefGoogle Scholar
  177. Zhang L, Ravdin LD, Relkin N et al (2003) Increased diffusion in the brain of professional boxers: a preclinical sign of traumatic brain injury? AJNR Am J Neuroradiol 24(1):52–57PubMedGoogle Scholar
  178. Zhang L, Heier LA, Zimmerman RD et al (2006) Diffusion anisotropy changes in the brains of professional boxers. AJNR Am J Neuroradiol 27(9):2000–2004PubMedGoogle Scholar
  179. Zhang J, Mitsis EM, Chu K et al (2010a) Statistical parametric mapping and cluster counting analysis of 18 F FDG-PET imaging in traumatic brain injury. J Neurotrauma 27(1):35–49. doi: 10.1089/neu.2009.1049 PubMedCrossRefGoogle Scholar
  180. Zhang K, Johnson B, Pennell D et al (2010b) Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Exp Brain Res 204(1):57–70. doi: 10.1007/s00221-010-2294-3 PubMedCentralPubMedCrossRefGoogle Scholar
  181. Zhang L, Dong S, Zhao G et al (2014) 7.0 T nuclear magnetic resonance evaluation of the amyloid beta (1–40) animal model of Alzheimer’s disease: comparison of cytology verification. Neural Regen Res 9(4):430–435PubMedCentralPubMedCrossRefGoogle Scholar
  182. Zhu W, Qi J, Zhan C et al (2008) Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med J (Engl) 121(20):2021–2025Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. M. Parizel
    • 1
    Email author
  • J. Kremling
    • 2
  • C. Janssen
    • 1
  • S. Laurijssen
    • 1
  • J. Van Goethem
    • 1
  • J. Huyskens
    • 1
  • F. De Belder
    • 1
  • C. Venstermans
    • 1
  • L. van den Hauwe
    • 1
  • W. Van Hecke
    • 1
    • 3
  1. 1.Department of RadiologyAntwerp University Hospital, University of AntwerpAntwerpBelgium
  2. 2.Faculty of Medicine and Health SciencesRuhr-University BochumBochumGermany
  3. 3.icoMetrixLeuvenBelgium

Personalised recommendations