Nuclear Medicine Imaging of Ankle Injuries

  • Monika HorisbergerEmail author
  • André Leumann
  • Helmut Rasch
  • Michael T. Hirschmann


Given the complex anatomy and function of the ankle, the management of chronic pathologies remains a challenge particularly in high-demand groups of patients such as athletes. Besides conventional X-rays for standard radiologic examination and MRI, nuclear imaging, mostly SPECT/CT, is becoming more and more important. In the last years, SPECT/CT has almost extruded simple scintigraphic bone scans in evaluation of complex bony hindfoot disorders and has renewed the interest in nuclear imaging for ankle pathologies. This is mainly due to its unique combination of detailed morphologic information from the CT and the clearly localised metabolic information of each specific bone or even each specific region of particular bones from the SPECT. This ability makes SPECT/CT a new important tool which adds substantial information to the data achievable from MRI examination. However, there is currently only scarce evidence about SPECT/CT around the ankle. This chapter summarises the current scientific knowledge, adds clinical examples and shows future directions to be elucidated to enhance the use of SPECT/CT around the ankle.


Bone Marrow Oedema Plantar Fasciitis Osteochondral Lesion Ankle Injury Ankle Pain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Computed tomography


Single-photon emission computed tomography


Magnetic resonance imaging


Positron emission tomography


  1. Breunung N, Barwick T, Fernando R, Gnanasegaran G, Vijayanathan S, Hosahalli M et al (2012) Additional benefit of SPECT-CT in investigating heel pain. Clin Nucl Med 33:705–706CrossRefGoogle Scholar
  2. Buck F, Hoffmann A, Hofer B, Pfirrmann C, Allgayer B (2009) Chronic medial knee pain without history of prior trauma: correlation of pain at rest and during exercise using bone scintigraphy and MR imaging. Skeletal Radiol 38:339–347CrossRefPubMedGoogle Scholar
  3. Choi W, Park K, Kim B, Lee J (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37:1974–1980CrossRefPubMedGoogle Scholar
  4. Dipaola J, Nelson D, Colville M (1991) Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy 7:101–104CrossRefPubMedGoogle Scholar
  5. Gaeta M, Minutoli F, Scribano E, Ascenti G, Vinci S, Bruschetta D et al (2005) CT and MR imaging findings in athletes with early tibial stress injuries: comparison with bone scintigraphy findings and emphasis on cortical abnormalities. Radiology 235:553–561CrossRefPubMedGoogle Scholar
  6. Giannini S, Vannini F (2004) Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int 25:168–175PubMedGoogle Scholar
  7. Giannini S, Buda R, Vannini F, Caprio F, Grigolo B (2008) Arthroscopic autologous chondrocyte implantation in osteochondral lesions of the talus: surgical technique and results. Am J Sports Med 36:873–880CrossRefPubMedGoogle Scholar
  8. Groshar D, Gorenberg M, Ben-Haim S, Jerusalmi J, Liberson A (1998) Lower extremity scintigraphy: the foot and ankle. Semin Nucl Med 28:62–77CrossRefPubMedGoogle Scholar
  9. Joong M, El-Khoury G (2007) Radiologic evaluation of chronic foot pain. Am Fam Physician 76:975–983PubMedGoogle Scholar
  10. Knupp M, Pagenstert G, Barg A, Bolliger L, Easley M, Hintermann B (2009) SPECT-CT compared with conventional imaging modalities for the assessment of the varus and valgus malaligned hindfoot. J Orthop Res 27:1461–1466CrossRefPubMedGoogle Scholar
  11. Kondo A, Togari A (2004) Activation of osteoblastic functions by a mediator of pain, bradykinin. Biochem Pharmacol 68:1423–1431CrossRefPubMedGoogle Scholar
  12. Krestan CR, Nemec U, Nemec S (2011) Imaging of insufficiency fractures. Semin Musculoskelet Radiol 15:198–207CrossRefPubMedGoogle Scholar
  13. Kretzschmar M, Wiewiorski M, Rasch H, Jacob A, Bilecen D, Walter M et al (2011) 99mTc-DPD-SPECT/CT predicts the outcome of imaging-guided diagnostic anaesthetic injections: a prospective cohort study. Eur J Radiol 80:410–415CrossRefGoogle Scholar
  14. Leumann A, Valderrabano V (2010) Osteochondrale Läsionen des Talus. Leading Opinions Orthopädie 1:38–40Google Scholar
  15. Leumann A, Valderrabano V, Plaass C, Rasch H, Studler U, Hintermann B et al (2011) A novel imaging method for osteochondral lesions of the talus – comparison of SPECT-CT with MRI. Am J Sports Med 39:1095–1101CrossRefPubMedGoogle Scholar
  16. Liu G, Jiang L, Dai L (2007) Substance P and its receptors in bone metabolism. Neuropeptides 41:271–283CrossRefPubMedGoogle Scholar
  17. Mohan H, Gnanasegaran G, Vijayanathan S, Fogelman I (2010) SPECT/CT in imaging foot and ankle pathology-the demise of other coregistration techniques. Semin Nucl Med 40:41–51CrossRefPubMedGoogle Scholar
  18. Pagenstert G, Barg A, Leumann A, Rasch H, Müller-Brand J, Hintermann B et al (2009) SPECT-CT imaging in degenerative joint disease of the foot and ankle. J Bone Joint Surg Br 91-B:1191–1196CrossRefGoogle Scholar
  19. Premkumar A, Perry M, Dwyer A, Gerber L, Johnson D, Venzon D et al (2002) Sonography and MR imaging of posterior tibial tendinopathy. AJR Am J Roentgenol 178:223–232CrossRefPubMedGoogle Scholar
  20. Schimmer R, Dick W, Intermann B (2001) The role of ankle arthroscopy in the treatment strategies of osteochondritis dissecans lesions of the talus. Foot Ankle Int 22:895–900PubMedGoogle Scholar
  21. Sijbrandij E, van Gils A, de Lange E (2002) Overuse and sports-related injuries of the ankle and hind foot: MR imaging findings. Eur J Radiol 43:45–56CrossRefPubMedGoogle Scholar
  22. Spyridonidis TJ, Mousafiris KV, Rapti EK, Apostolopoulos DJ (2014) Bone scintigraphy depicts bilateral atypical femoral stress fractures with metachronous presentation, long before a complete fracture occurs. Hell J Nucl Med 17:54–57PubMedGoogle Scholar
  23. Taranow W, Bisignani G, Towers J, Conti S (1999) Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 20:474–480CrossRefPubMedGoogle Scholar
  24. Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G (2009) Knee-to-ankle mosaicplasty for treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37:105–111CrossRefGoogle Scholar
  25. Verhagen R, Maas M, Dijkgraaf M, Tol J, Krips R, Van Dijk C (2005) Prospective study on diagnostic strategies in osteochondral lesions of the talus: is MRI superior to helical CT? J Bone Joint Surg Br 87:41–46PubMedGoogle Scholar
  26. Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Monika Horisberger
    • 1
    Email author
  • André Leumann
    • 1
  • Helmut Rasch
    • 2
  • Michael T. Hirschmann
    • 3
  1. 1.Orthopaedic DepartmentUniversity Hospital BaselBaselSwitzerland
  2. 2.Institute of Radiology and Nuclear Medicine, Kantonsspital Baselland-BruderholzBruderholzSwitzerland
  3. 3.Department of Orthopaedic Surgery and TraumatologyKantonsspital Baselland (Bruderholz, Liestal, Laufen)BruderholzSwitzerland

Personalised recommendations