Skip to main content

Laser Shock Processing at Elevated Temperature

  • Chapter
  • First Online:
  • 594 Accesses

Abstract

This chapter presents the influences on 00Cr12 alloy’s mechanical properties at high temperatures, on metallographic structure evolution and dislocation configuration of 6061-T651 aluminum alloy at elevated temperature, and on ASTM: 410L00Cr12 microstructures and fatigue resistance in the temperature range 25–600 °C.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hong SG et al (2004) Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel. J Nucl Mater 328:232–242

    Google Scholar 

  2. Hong SG et al (2007) Temperature effect on the low-cycle fatigue behavior of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter. Mater Sci Eng A 457:139–147

    Google Scholar 

  3. Vogt JB et al (2002) High temperature low cycle fatigue of 2.25Cr1Mo steels: role of microstructure and effect of environment. Solid Mech Mater Eng 45:46–50

    Google Scholar 

  4. Wu LL, Holloway BC (2000) Analysis of diamond-like carbon and Ti/MoS2 coatings on Ti6Al4V substrates for applicability to turbine engine applications. Surf Coat Technol 130:207–213

    Google Scholar 

  5. Suh CM et al (1990) Fatigue microcracks in type 304 stainless steel at elevated temperature. Fatigue Fract Eng Mater Struct 13:487–496

    Google Scholar 

  6. Fan ZC et al (2007) Fatigue-creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction. Int J Fatigue 29:1174–1183

    Google Scholar 

  7. Bethge K et al (1990) Crack initiation and crack propagation under thermal cyclic loading. High Temp Technol 8:98–104

    Google Scholar 

  8. Ren WJ et al (2005) Evaluation of coatings on Ti6Al4V substrate under fretting fatigue. Surf Coat Technol 192:177–188

    Google Scholar 

  9. Hutson AL et al (2002) Effect of various surface conditions on fretting fatigue behavior of Ti6Al4V. Int J Fatigue 24:1223–1234

    Google Scholar 

  10. Montros CS et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036

    Google Scholar 

  11. Romain JP et al (1986) Laser shock experiments at pressures above 100Mbar. Physica 139:595–598

    Google Scholar 

  12. Hyukjae L, Shankar, M (2004) Stress relaxation behavior of shot peening Ti-6Al-4V under fretting fatigue at elevated temperature. Mater Sci Eng A 366:412–420

    Google Scholar 

  13. Hyukjae L et al (2005) Investigation into effects of re-shot-peening on fretting fatigue behavior of Ti6Al4V. Mater Sci Eng A 390:227–232

    Google Scholar 

  14. Venkatech V, Rack HJ (1999) A neural network approach to elevated temperature creep-fatigue life prediction. Int J Fatigue 21:225–234

    Google Scholar 

  15. Shang DG et al (2007) Creep-fatigue life prediction under fully-reversed multiaxial loading at high temperatures. Int J Fatigue 29:705–712

    Google Scholar 

  16. Ren XD et al (2010) Effects of laser shock processing on 00Cr12 mechanical properties in the temperature range from 25 to 600 °C. Appl Surf Sci 257:1712–1715

    Google Scholar 

  17. Ling P, Wight, CA (1995) Laser-generated shock waves in thin films of energetic materials. J Appl Phys 78:7022–7025

    Google Scholar 

  18. Couturier S et al (1996) Shock profile induced by short laser pulses. J Appl Phys 79:9338–9342

    Google Scholar 

  19. Montross CS et al (2000) Subsurface properties of laser peened 6061-T6 Al weldments. Surf Eng 16:116–121

    Google Scholar 

  20. Ren XD et al (2011) Mechanical properties and residual stresses changing on 00Cr12 alloy by nanoseconds laser shock processing at high temperatures. Mat Sci Eng A 528:1949–1953

    Google Scholar 

  21. SAE AMS 2546 (2004) http://www.sae.org. Accessed 9 Nov 2012

  22. Montross CS et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036

    Google Scholar 

  23. Zhang YK et al (2001) Mechanism ofimprovement on fatigue life of metal by laser-excited shock waves. Appl Phys A 72:113–116

    Google Scholar 

  24. Zhang YK et al (2009) Effect of laser shockprocessing on the mechanical properties and fatigue lives of the turbojet engine bladesmanufactured by LY2 aluminum alloy. Mater Des 30:1697–1703

    Google Scholar 

  25. Wang F et al (2007) Materials 14:529–532

    Google Scholar 

  26. Wang SP et al (1998) Compressive residual stressintroduced by shot peening. J Mater Process Technol 73:64–73

    Google Scholar 

  27. Farrahi GH et al (1995) Effect of shot peening on residual stressand fatigue life of spring steel. Fatigue Fract Eng Mater Struct 18:211–220

    Google Scholar 

  28. Guagliano M, Vergani L (2004) An approach for prediction of fatigue strength of shot peened components. Eng Fract Mech 71:501–512

    Google Scholar 

  29. Schulze V (2006) Modern mechanical surface treatment: states, stability, effects. Wiley-VCH, Weinheim

    Google Scholar 

  30. Juijerm P and Altenberger I (2007) Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110. Mater Sci Eng A 452–453:475–482

    Google Scholar 

  31. Hatamleh O et al (2009) An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminium lithium alloy joints. Mater Des 30:3367–3373

    Google Scholar 

  32. James MR (1985) Residual stress and stress relaxation. Plenum, New York

    Google Scholar 

  33. Altenberger I et al (2001) Analysis and assessment of residual stress states in mechanically surface treated materials. Mater Sci Res Int 1:275

    Google Scholar 

  34. Nalla RK et al (2003) On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Mater Sci Eng A 355:216–230

    Google Scholar 

  35. Masaki K et al (2007) Effects of laser peening treatment on high cycle fatigue properties of degassing-processed cast aluminum alloy. Mater Sci Eng A 468–470:171–175

    Google Scholar 

  36. Nikitin I, Altenberger I (2007) Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI304 in the temperature range 25–600 °C. Mater Sci Eng A 465:176–182

    Google Scholar 

  37. Heitkemper M et al (2003) Fatigue and fracture behavior of a laser surface heat treated martensitic high-nitrogen tool steel. Int J Fatigue 25:101–106

    Google Scholar 

  38. Ye BC et al (2010) Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Adv Eng Mater 12:291–297

    Google Scholar 

  39. SAE AMS 2546 (2004) http://www.sae.org. Accessed 9 Nov 2012

  40. Ren NF et al (2014) High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening. Mat Des 53:452–456

    Google Scholar 

  41. Scholtes B (1997) Assessment of residual stresses. In: Structural and residual stress analysis by nondestructive methods. Amsterdam, pp 590–632

    Google Scholar 

  42. Nikitin I et al (2004) High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Mater 50:1345–1350

    Google Scholar 

  43. Altenberger I et al (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264:1–16

    Google Scholar 

  44. Xuan FZ et al (2010) Mass transport in laser surface nitriding involving the effect of high temperature gradient: simulation and experiment. Comput Mater Sci 49:104–111

    Google Scholar 

  45. Juijerm P, Altenberger I (2007) Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110. Mater Sci Eng A 452–453:475–482

    Google Scholar 

  46. Juijerm P, Altenberger I (2006) Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures. Scripta Mater 55:1111–1114

    Google Scholar 

  47. Xuan FZ et al (2010) Laser surface nitriding of Ti6Al4V alloy coupled with an external stress field. J Mater Res 25:344–9

    Google Scholar 

  48. Konig GW (2002) In: Proceedings of the 8th international conference on shot peening (ICSP), pp 13–22

    Google Scholar 

  49. Meyers MA et al (2001) The onset of twinning in metals: a constitutive description. Acta Mater 49:4025–39

    Google Scholar 

  50. Ren XD et al (2013) The effects of residual stress on fatigue behavior and crack propagation from laser shock processing-worked hole. Mater Des 44:149–54

    Google Scholar 

  51. Ren XD et al (2011) Comparison of the simulation and experimental fatigue crack behaviors in the nanoseconds laser shocked aluminum alloy. Mater Des

    Google Scholar 

  52. Yang JM et al (2001) Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes. Mater Sci Eng A 298:296–299

    Google Scholar 

  53. Rubio- González C et al (2004) Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Mater Sci Eng A 386:291–295

    Google Scholar 

  54. Nikitin I et al (2004) High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scr Mater 50:1345–1350

    Google Scholar 

  55. Schubbe JJ (2009) Fatiguecrackpropagationin7050-T7451platealloy. Mech Eng Fract 76:1037–1048

    Google Scholar 

  56. Rubio-González C et al (2011) Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Mater Sci Eng A 528:914–919

    Google Scholar 

  57. Sudha C et al (2010) Mater Manuf Process 25(2010):956

    Google Scholar 

  58. Ahmad Fauzi MN et al (2010) Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding. Ismail, Mater Des 31:670

    Google Scholar 

  59. Maisonnette D et al (2011) Effects of heat treatments on the microstructure and mechanical properties of a 6061aluminium alloy. Mater Sci Eng A 528:2718

    Google Scholar 

  60. Uday MB et al (2011) Effect of welding speed on mechanical strength of friction welded joint of YSZ–alumina composite and 6061 aluminum alloy. Mater Sci Eng A 528:4753

    Google Scholar 

  61. Fahimpour V et al (2012) Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Mater Des 39:329

    Google Scholar 

  62. Wu KH et al (2007) Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy. Surf Coat Technol 201:5782

    Google Scholar 

  63. El-Menshawy K et al (2012) Corros Sci 54(2012):167

    Google Scholar 

  64. Carvalho ALM, Voorwald HJC (2007) Influence of shot peening and hard chromium electroplating on the fatigue strength of 7050-T7451 aluminum alloy. Int J Fatigue 29:1282

    Google Scholar 

  65. Gao YK, Wu XR (2011) Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses. Acta Mater 59:3737

    Google Scholar 

  66. Luong H, Hill MR (2010) The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy. Mater Sci Eng A 527:699–707

    Google Scholar 

  67. Wang D et al (2009) Effect of recrystallization and heat treatment on strength and SCC of an Al-Zn-Mg-Cu alloy. Mater Chem Phys 117:228

    Google Scholar 

  68. Zhang YK et al (2001) Elastic properties modification in aluminum alloy induced by laser-shock processing. Mater Sci Eng A 297:138

    Google Scholar 

  69. Rouleau B et al (2011) Characterization at a local scale of a laser-shock peened aluminum alloy surface. Appl Surf Sci 257:7195

    Google Scholar 

  70. Arun Prakash N et al (2010) Microstructural evolution and mechanical properties of oil jet peened aluminium alloy, AA6063-T6. Mater Des 31:4066

    Google Scholar 

  71. Fribourg G et al (2011) Microstructure modifications induced by a laser surface treatment in an AA7449 aluminium alloy. Mater Sci Eng A 528:2736

    Google Scholar 

  72. Ren XD et al (2010) Effects of laser shock processing on 00Cr12 mechanical properties in the temperature range from 25 ℃ to 600 ℃. Appl Surf Sci 257:1712–1715

    Google Scholar 

  73. Ren XD et al (2013) Metallographic structure evolution of 6061-T651 aluminum alloy processed by laser shock peening: effect of tempering at the elevated temperatures. Surf Coat Technol 221:111–117

    Google Scholar 

  74. Prasada Rao AK et al (2004) Effect of Grain Refinement on Wear Properties of Al and Al-7Si Alloy. Wear 257:148–153

    Google Scholar 

  75. Juijerm P, Altenberger I (2006) Residual stress relaxation of deep-rolled Al–Mg–Si–Cu alloy during cyclic loading at elevated temperatures. Scr Mater 55:1111

    Google Scholar 

  76. Huang J et al (2012) Mater Eng Perform 21:915

    Google Scholar 

  77. Gomez-Rosas G et al (2005) High level compressive residual stresses produced in aluminum alloys by laser shock processing. Appl Surf Sci 252:883

    Google Scholar 

  78. Ren XD et al (2009) Influence of compressive stress on stress intensity factor of hole-edge crack by high strain rate laser shock processing. Mater Des 30:3512

    Google Scholar 

  79. Hu HE et al (2008) Microstructure Characterization of 7050 Aluminum Alloy During Dynamic Recrystallization and Dynamic Recovery. Mater Charact 59:1185

    Google Scholar 

  80. Galiyev A et al (2003) Continuous dynamic recrystallization in magnesium alloys. Mater Sci Forum 419–422:509

    Google Scholar 

  81. Humphreys FJ, Hatherly M (1995) Recrystallization and Related Annealing Phenomena. Elsevier Science Ltd., Oxford, p 235

    Google Scholar 

  82. Montross CS, Wei T, Ye L (2002) Laser shock processing and its effects on microstructure and properties of metal alloys:a review. Int J Fatigue 24:1021–1036

    Google Scholar 

  83. Ren XD et al (2013) Dislocation polymorphism transformation of 6061-T651 aluminum alloy processed by laser shock processing: effect of tempering at the elevated temperatures. Mater Sci Eng A 578:96–102

    Google Scholar 

  84. Nalla RK et al (2003) On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Mater Sci Eng A 355:216–225

    Google Scholar 

  85. He TT et al (2011) Microstructure and hardness of laser shockedultra-fine-grained aluminum. J Mater Sci Technol 27:793–796

    Google Scholar 

  86. Xiong Y et al (2011) Rare Met Mater Eng 40:176–185

    Google Scholar 

  87. Hu YX, Grandhi RV (2012) Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology. Surf Coat Technol 206:3374–3385

    Google Scholar 

  88. Peyre P et al (1996) Laser shock processing of aluminium alloys, application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113

    Google Scholar 

  89. Lee WS et al (2011) Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range. Mater Sci Eng A 528:6279–6286

    Google Scholar 

  90. Harold L, Michael RH (2008) The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy. Mater Sci Eng A 477(1–2):208–213

    Google Scholar 

  91. Panigrahi SK, Jayaganthan R (2011) Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling. Mater Sci Eng A 528:3147–3160

    Google Scholar 

  92. Buha J, Lumley RN, Crosky AG (2007) Secondary precipitation in an Al–Mg–Si–Cu alloy. Acta Mater 55:3015–3024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, X. (2015). Laser Shock Processing at Elevated Temperature. In: Laser Shocking Nano-Crystallization and High-Temperature Modification Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46444-1_3

Download citation

Publish with us

Policies and ethics