Skip to main content

LSP Numerical Simulation

  • Chapter
  • First Online:
  • 581 Accesses

Abstract

This chapter gives a comprehensive review on numerical simulation which could resolve engineering problems and physical problems even the nature phenomena by numerical calculation and image displayed method. At present, the main method of numerical simulation is the finite element (FE) method, the finite difference method, and the finite volume method. Compared with traditional experiment method, numerical simulation has been widely used in many fields, such as mechanical process, large building fire temperature field, and hydrogeology. Simulation methods are introduced in this chapter. For instance, the residual stress induced by laser shock processing (LSP) and the thermal relaxation behaviors of residual stress in Ni-based alloy GH4169 were investigated by means of three-dimensional nonlinear FE analysis. Fracture analysis software and crack growth model have found the application in FE analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prevey P et al (1998) Thermal residual stress relaxation and distortion in surface enhanced gas turbine engine components. In: Proceedings of the 17th heat treating society conference and exposition and the 1st international induction heat treating symposium. ASM Materials, Park, OH: pp 3–12

    Google Scholar 

  2. Paul SP et al (2001) The effect of low plasticity burnishing (LPB) on the HCF performance and FOD resistance of Ti-6Al-4 V. In: Proceedings of the 6th national turbine engine high cycle fatigue (HCF) conference, Jacksonville

    Google Scholar 

  3. Charles SM et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036

    Article  Google Scholar 

  4. Amarchinta HK et al (2009) Material model validation for laser shock peening process simulation.Modell Simul Mater Sci Eng. http://iopscience.iop.org. Accessed 21 Jan 2013

  5. Masmoudi N et al (1989) Influence of temperature and time on the stress relaxation process of shot peened IN 100 superalloys. Mater Tech (Paris) 77:29–36

    Google Scholar 

  6. Cao W et al (1994) Thermomechanical relaxation of residual stress in shot peened nickel base superalloy. Mater Sci Technol 10:947–954

    Article  Google Scholar 

  7. Khadhraoui M et al (1997) Experimental investigations and modelling of relaxation behaviour of shot peening residual stresses at high temperature for nickel base superalloys. Mater Sci Technol 13:360–367

    Article  Google Scholar 

  8. Cai DY et al. (2006). Precipitation and residual stress relaxation kinetics in shot-peened Inconel 718. J Mater Eng Perform 15(5):614–617

    Google Scholar 

  9. Zhong Z et al (2012) Thermal relaxation of residual stress in laser shock peened Ti-6Al-4 V alloy. Surf Coating Technol 206:4619–4627

    Article  Google Scholar 

  10. Zhong Z et al (2011) A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. Int J Impact Eng 38:590–596

    Article  Google Scholar 

  11. Dennis JB et al (2009) A coupled creep plasticity model for residual stress relaxation of a shot peened Nickel-base superalloy. Mater Technol 131:75–79

    Google Scholar 

  12. Jeffrey JD et al (2009) Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy. Int J Impact Eng 36:1027–1043

    Article  Google Scholar 

  13. Marco DS et al (2003) Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation. Int J Impact Eng 28:849–876

    Article  Google Scholar 

  14. Fabbro R, Pournier J, Ballard P (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68:775–784

    Article  Google Scholar 

  15. Ren XD et al (2013) A finite element analysis of thermal relaxation of residual stress in laser shock processing Ni-based alloy GH4169. Mater Des 54(2014):708–711

    Google Scholar 

  16. Peyre P et al (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior. Mater Sci Eng A 210:102–113

    Article  Google Scholar 

  17. Evans A et al (2005) Relaxation of residual stress in shot peened Udimet 720 Li under high temperature isothermal fatigue. Int J Fatigue 27:1530–1534

    Article  Google Scholar 

  18. Feng BX et al (2009) Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy. Mater Sci Eng A 512:105–108

    Article  Google Scholar 

  19. Aghdam AB et al (2010) An FE analysis for assessing the effect of short-term exposure to elevated temperature on residual stresses around cold expanded fastener holes in aluminum alloy 7075-T6. Mater Des 31:500–507

    Article  Google Scholar 

  20. Juijerm P, Altenberger I (2006) Residual stress relaxation of deep-rolled Al-Mg-Si-Cu alloy during cyclic loading at elevated temperatures. Scripta Mater 55:1111–1114

    Article  Google Scholar 

  21. Xie LC et al (2011) Thermal relaxation of residual stresses in shot peened surface layer of (TiB + TiC)/Ti-6Al-4 V composite at elevated temperatures. Mater Sci Eng A 528:6478–6483

    Article  Google Scholar 

  22. Ren XD et al (2013) Metallographic structure evolution of 6061-T651 aluminum alloy processed by laser shock peening: effect of tempering at the elevated temperatures. Surf Coat Technol 221:111–117

    Article  Google Scholar 

  23. Almer JD et al (2000) The effects of residual macrostresses and microstresses on fatigue crack initiation. Mater Sci Eng A 284:268–279

    Article  Google Scholar 

  24. Genel K et al (2000) Effect of ion nitriding on fatigue behaviour of AISI 4140 steel. Mater Sci Eng A 279:207–216

    Article  Google Scholar 

  25. Berger MC, Gregory JK (1999) Residual stress relaxation in shot peened Timetal 21s. Mater Sci Eng A 263:200–204

    Article  Google Scholar 

  26. Heinz A et al (2000) Recent development in aluminum alloys for aerospace applications. Mater Sci Eng A 280:102–107

    Article  Google Scholar 

  27. Warren AW et al (2008) Massive parallel laser shock peening: simulation, analysis, and validation. Int J Fatigue 30:188–197

    Article  Google Scholar 

  28. Caslaru R et al (2009) Fabrication and characterization of micro dent array produced by laser shock peening on aluminum surfaces. Trans NAMRI/SME 37:159–166

    Google Scholar 

  29. ArifAbulFazal M (2003) Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. J Mater Process Technol 136:120–138

    Article  Google Scholar 

  30. Ramsamooj DV (2003) Analytical prediction of short to long fatigue crack growth rate using small and large-scale yielding fracture mechanics. J Fatigue 25(9–11):923–933

    Article  Google Scholar 

  31. Edgar HK (1998) Some aspects of fracture mechanics research during the last 25 years. Steel Res 69:206–213

    Google Scholar 

  32. Ray A, Patanker P (2001) Fatigue crack growth under variable amplitude loading: part I - model formulation in state space setting. Appl Math Modell 25:979–994

    Article  Google Scholar 

  33. Ren XD et al (2009) Influence of compressive stress on stress intensity factor of hole-edge crack by high strain rate laser shock processing. Mater Des 30:3512–3517

    Article  Google Scholar 

  34. Zhang YK et al (2009) Investigation of the stress intensity factor changing on the hole crack subject to laser shock processing. Mater Des 30:2769–2773

    Article  Google Scholar 

  35. Carpinteri A, Pugno N (2006) Cracks and re-entrant corners in functionally graded materials. Eng Fract Mech 73:1279–1291

    Article  Google Scholar 

  36. Barlow KW, Chandra R (2005) Fatigue crack propagation simulation in an aircraft engine fan blade attachment. Int J Fatigue 27:1661–1668

    Article  Google Scholar 

  37. Ren XD et al (2011) Comparison of the simulation and experimental fatigue crack behaviors in the nanoseconds laser shocked aluminum alloy. Mater Des 32(2011):1138–1143

    Article  Google Scholar 

  38. Qian J, Fatemi A (1996) Mixed mode fatigue crack growth: a literature survey. Eng Fract Mech 55(6):969–990

    Article  Google Scholar 

  39. Forman RG et al (1994) Fatigue crack growth computer program NASA/FLAGRO version 2.0. Johnson Space Center, Houston (Texas): Rpt. # JSC-22267A

    Google Scholar 

  40. Newman JC Jr (1984) A crack opening stress equation for fatigue crack growth. Int J Fract 24:R131–R135

    Article  Google Scholar 

  41. Gomez-Rosas G et al (2010) Laser shock processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths. Appl Surf Sci 256:5828–5831

    Article  Google Scholar 

  42. Hatamleh Omar et al (2007) Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints. Int J Fatigue 29:421–434

    Article  Google Scholar 

  43. Liu Q et al (2002) Internal cracking during surface treatment of 7050-T74 aluminium alloy using laser shock peening. Int Conf Struct Integrity Fract 25–28:177–182

    Google Scholar 

  44. Mahorter R et al (1985) Life prediction methodology for aircraft gas turbine engine disks. In: AIAA/SAE/ASME/ASEE 21st joint propulsion conference, Monterey, CA, pp 1–6

    Google Scholar 

  45. Sadananda K, Vasudevan AK (2005) Fatigue crack growth behavior of titanium alloys. Int J Fatigue 27:1255–1266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ren, X. (2015). LSP Numerical Simulation. In: Laser Shocking Nano-Crystallization and High-Temperature Modification Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46444-1_2

Download citation

Publish with us

Policies and ethics