Skip to main content

Localization and Entanglement in Relativistic Quantum Physics

  • Chapter
The Message of Quantum Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 899))

Abstract

These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop “The Message of Quantum Science—Attempts Towards a Synthesis” held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues:

  • Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  • A brief summary of the differences in mathematical structure compared to the QM of finitely many particles that emerge form the synthesis with relativity, in particular different localization concepts, type III von Neumann algebras rather than type I, and “deeply entrenched” (Clifton and Halvorson, Stud Hist Philos Mod Phys 32:1–31, 2001) entanglement,

  • Comments on the question whether these mathematical differences have significant consequences for the physical interpretation of basic concepts of QM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….

  2. 2.

    Also known as Local Quantum Physics [55].

  3. 3.

    More precisely, also representations “up to a phase” are allowed, which amounts to replacing \(\mathcal{P}_{+}^{\uparrow }\) by its universal covering group \(\mathit{ISL}(2, \mathbb{C})\).

  4. 4.

    For simplicity of the exposition we refrain from discussing the possibility that the Lorentz transformations act only as automorphisms on the algebra of observables but are not unitarily implemented on the Hilbert space of states under consideration, as can be expected in charged superselection sectors of theories with massless particles [23, 50].

  5. 5.

    Here, and in the following, units are chosen so that Planck’s constant, , and the velocity of light, c, are equal to 1. The metric on Minkowski space is g μ ν  = diag (1, −1, −1, −1).

  6. 6.

    In this form the result was first published by J.F. Perez and I.F. Wilde in [75]. See also [65] for the same conclusion under slightly weaker premises.

  7. 7.

    This follows from the “edge of the wedge” theorem, that is a generalization of the Schwarz reflection principle to several complex variables, see, e.g., [83].

  8. 8.

    This objection does not exclude approximate localization in the sense of Newton and Wigner [73].

  9. 9.

    Field operators at a point can, however, be defined as quadratic forms on vectors with sufficiently nice high energy behavior.

  10. 10.

    More generally, a representation of the covering group \(\mathit{ISL}(2, \mathbb{C})\).

  11. 11.

    For mathematical convenience we assume that the operators are bounded and that the algebras are closed in the weak operator topology, i.e., that they are von Neumann algebras. The generation of such algebras from unbounded quantum field operators \(\Phi _{\alpha }(f)\) is in general a nontrivial issue that is dealt with, e.g., in [18, 45]. In cases when the real and imaginary parts of the field operators are essentially self-adjoint, one may think of the \(\mathcal{F}(\mathcal{O})\) as generated by bounded functions (e.g., spectral projectors, resolvents, or exponentials) of these operators smeared with test functions having support in \(\mathcal{O}\). More generally, the polar decomposition of the unbounded operators can be taken as a starting point for generating the local net of von Neumann algebras.

  12. 12.

    In the theory of superselection sectors, initiated by Borchers in [14] and further developed in particular by Doplicher et al. in [3942], the starting point is the net of observables while the field net and the gauge group are derived objects. For a very recent development, applicable to theories with long range forces, see [26].

  13. 13.

    Here and in the sequel, a state means a positive, normalized linear functional on the algebra in question, i.e., a linear functional such that ω(A A) ≥ 0 for all A and ω(1) = 1. We shall also restrict the attention to normal states, i.e., ω(A) = trace (ρ A) with a nonnegative trace class operator ρ on \(\mathcal{H}\) with trace 1.

  14. 14.

    For simplicity we have assumed local commutativity. In the case of Fermi fields the same conclusion is drawn by splitting the operators into their bosonic and fermionic parts.

  15. 15.

    Equation (15.7) is, strictly speaking, only claimed for A,B in a the dense subalgebra of “smooth” elements of \(\mathcal{A}\) obtained by integrating \(\Delta ^{\mathrm{i}t}A\Delta ^{-\mathrm{i}t}\) with a test functions in t.

  16. 16.

    Due to a sign convention in modular theory the temperature is formally − 1, but by a scaling of the parameter t, including an inversion of the sign, can produce any value of the temperature.

  17. 17.

    Fermi fields can be included by means of a “twist” that turns anticommutators into commutators as in [11].

  18. 18.

    Such real subspaces of a complex Hilbert space are called standard in the spatial version of Tomita–Takesaki theory [81].

  19. 19.

    The hyperfiniteness, i.e., the approximability by finite dimensional matrix algebras, follows from the split property considered in Sect. 15.5.1.

  20. 20.

    Recall that “state” means here always normal state, i.e. a positive linear functional given by a density matrix in the Hilbert space where \(\mathcal{A}\) operates. As a C algebra \(\mathcal{A}\) has pure states, but these correspond to disjoint representations on different (non separable) Hilbert spaces.

  21. 21.

    If the algebra is represented in a “standard form” in the sense of modular theory the vector can be uniquely fixed by taking it from the corresponding “positive cone” [19].

  22. 22.

    This holds because tP 1∕2 e −iHt ψ is analytic in the complex lower half plane for all vectors \(\psi \in \mathcal{H}\) if H ≥ 0.

  23. 23.

    Already the Corollary to the Reeh–Schlieder Theorem in Sec. 15.3.3. implies that excitation cannot be measured by a local positive operator since the expectation value of such an operator cannot be zero in a state with bounded energy spectrum. The nonexistence of any positive operator satisfying (15.36) is a stronger statement.

  24. 24.

    See [12] for important steps in this direction and [49] for a thorough analysis of foundational issues of QM.

  25. 25.

    Already Max Planck in his Leiden lecture of 1908 speaks of the “Emanzipierung von den antrophomorphen Elementen” as a goal, see [76], p. 49.

References

  1. Alazzawi, S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103, 37–58 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Araki, H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4, 1343–1362 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Araki, H.: Von Neumann algebras of local observables for free scalar fields. J. Math. Phys. 5, 1–13 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Araki, H.: Type of von Neumann algebra associated with free field. Prog. Theor. Phys. 32, 956–965 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Araki, H.: Remarks on spectra of modular operators of von Neumann algebras. Commun. Math. Phys. 28, 267–277 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Araki, H.: Mathematical Theory of Quantum Fields. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  7. Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  8. Araki, H., Woods, E.J.: A classification of factors. Publ. R.I.M.S., Kyoto Univ. 4, 51–130 (1968)

    Google Scholar 

  9. Barata, J.C.A., Jäkel, C.D., Mund, J.: The \(\mathcal{P}(\varphi )_{2}\) model on the de sitter space. arXiv:1311.2905

    Google Scholar 

  10. Bisognano, J.J., Wichmann, E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Bisognano, J.J., Wichmann, E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  12. Blanchard, P., Olkiewicz, R.: Decoherence induced transition from quantum to classical dynamics. Rev. Math. Phys. 15, 217–244 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bogoliubov, N.N., Lugonov, A.A., Oksak, A.I., Todorov, I.T.: General Principles of Quantum Field Theory. Kluwer, Dordrecht (1990)

    Book  Google Scholar 

  14. Borchers, H.J.: Local rings and the connection of spin with statistics. Commun. Math. Phys. 1, 281–307 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Borchers, H.J.: A remark on a theorem of B. Misra. Commun. Math. Phys. 4, 315–323 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Borchers, H.J.: Half-sided translations and the type of von Neumann algebras. Lett. Math. Phys. 44, 283–290 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Borchers, H.J.: On revolutionizing quantum field theory with Tomita’s modular theory. J. Math. Phys. 41, 3604–3673 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Borchers, H.J., Yngvason, J.: From quantum fields to local von Neumann algebras. Rev. Math. Phys. Special Issue, 15–47 (1992)

    Google Scholar 

  19. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York (1979)

    Book  Google Scholar 

  20. Brunetti, R., Guido, D., Longo, R.: Modular localization and wigner particles. Rev. Math. Phys. 14, 759–786 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541–1599 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Buchholz, D.: Product states for local algebras. Commun. Math. Phys. 36, 287–304 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Buchholz, D.: Gauss’ law and the infraparticle problem. Phys. Lett. B 174, 331–334 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Buchholz, D., Haag, R.: The quest for understanding in relativistic quantum physics. J. Math. Phys. 41, 3674–3697 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Buchholz, D., Roberts, J.E.: New light on infrared problems: sectors, statistics, symmetries and spectrum. Commun. Math. Phys. 330, 935–972 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Buchholz, D., Verch, R.: Scaling algebras and renormalization group in algebraic quantum field theory. Rev. Math. Phys. 7, 1195–1239 (1996)

    Article  MathSciNet  Google Scholar 

  28. Buchholz, D., Wichmann, E.: Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Buchholz, D., Yngvason, J.: Generalized nuclearity conditions and the split property in quantum field theory. Lett. Math. Phys. 23, 159–167 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Buchholz, D., Yngvason, J.: There are no causality problems in Fermi’s two atom system. Phys. Rev. Lett. 73, 613–616 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Buchholz, D., Doplicher, S., Longo, R.: On noether’s theorem in quantum field theory. Ann. Phys. 170, 1–17 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123–135 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Buchholz, D., D’Antoni, C., Longo, R.: Nuclear maps and modular structures I. J. Funct. Anal. 88, 233–250 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Buchholz, D., D’Antoni, C., Longo, R.: Nuclear maps and modular structures II: applications to quantum field theory. Commun. Math. Phys. 129, 115–138 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Buchholz, D., Lechner, G., Summers, S.J.: Warped convolutions, rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Clifton, R., Halvorson, H.: Entanglement and open systems in algebraic quantum field theory. Stud. Hist. Philos. Mod. Phys. 32, 1–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Connes, A.: Une classification des facteurs de type III. Ann. Sci. Ecole Norm. Sup. 6, 133–252 (1973)

    MATH  MathSciNet  Google Scholar 

  38. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51–107 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Doplicher, S., Haag, R., Roberts, J.E.: Fields, observables and gauge transformations II. Commun. Math. Phys. 15, 173–200 (1969)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  42. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics II. Commun. Math. Phys. 35, 49–85 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  43. Driessler, W.: Comments on lightlike translations and applications in relativistic quantum field theory. Commun. Math. Phys. 44, 133–141 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Driessler, W.: On the type of local algebras in quantum field theory. Commun. Math. Phys. 53, 295–297 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Driessler, W., Summers, S.J., Wichmann, E.H.: On the connection between quantum fields and von Neumann algebras of local operators. Commun. Math. Phys. 105, 49–84 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Fermi, E.: Quantum theory of radiation. Rev. Mod. Phys. 4, 87–132 (1932)

    Article  ADS  Google Scholar 

  47. Fredenhagen, K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 84, 79–89 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  48. Fredenhagen, K.: A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Fröhlich, J., Schubnel, B.: Quantum probability theory and the foundations of quantum mechanics. arXiv:1310.1484v1 [quant-ph]

    Google Scholar 

  50. Fröhlich, J., Morchio, G., Strocchi, F.: Infrared problem and spontaneous breaking of the Lorentz Group in QED. Phys. Lett. B 89, 61–64 (1979)

    Article  ADS  Google Scholar 

  51. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1987)

    Book  Google Scholar 

  52. Grosse, H., Lechner, G.: Wedge-Local Quantum Fields and Noncommutative Minkowski Space. J. High Energy Phys. 0711, 012 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  53. Haag, R.: On quantum field theories. Mat.-fys. Medd. Kong. Danske Videns. Selskab 29, Nr.12 (1955)

    Google Scholar 

  54. Haag, R.: Quantum field theory with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  55. Haag, R.: Local Quantum Physics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  56. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Haagerup, U.: Connes’ bicentralizer problem and uniqueness of injective factors of type III1. Acta Math. 158, 95–148 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  59. Hegerfeldt, G.C.: Causality problems in Fermi’s two atom system. Phys. Rev. Lett. 72, 596–599 (1994)

    Article  ADS  MATH  Google Scholar 

  60. Jost, R.: The General Theory of Quantized Fields. American Mathematical Society, Providence, RI (1965)

    MATH  Google Scholar 

  61. Kawahigashi, Y., Longo, R.: Classification of two-dimensional local conformal nets with c < 1 and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244, 63–97 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  63. Lechner, G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Longo, R.: Notes on algebraic invariants for non-commutative dynamical systems. Commun. Math. Phys. 69, 195–207 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. Malament, D.B.: In defence of a dogma: why there cannot be a relativistic quantum mechanics of (localizable) particles. In: Clifton, R. (ed.) Perspectives on Quantum Reality, pp. 1–10. Kluwer, Dordrecht (1996); Montreal 2001

    Google Scholar 

  66. Mund, J.: String-localized quantum fields, modular localization and gauge theories. In: Sidoravicius, V. (ed.) New Trends in Mathematical Physics, pp. 495–508. Springer, New York (2009)

    Chapter  Google Scholar 

  67. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields from Wigner representations. Phys. Lett. B 596, 156–162 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116–229 (1936)

    Article  Google Scholar 

  70. Murray, F.J., von Neumann, J.: On rings of operators II. Trans. Am. Math. Soc. 41, 208–248 (1937)

    Article  Google Scholar 

  71. Murray, F.J., von Neumann, J.: On rings of operators IV. Ann. Math. 44, 716–808 (1943)

    Article  MATH  Google Scholar 

  72. Narnhofer, H.: The role of transposition and CPT operation for entanglement. Phys. Lett. A 310, 423–433 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21, 400–406 (1949)

    Article  ADS  MATH  Google Scholar 

  74. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Perez, J.F., Wilde, I.F.: Localization and causality in relativistic quantum mechanics. Phys. Rev D. 16, 315–317 (1977)

    Article  ADS  Google Scholar 

  76. Planck, M.: Vorträge und Erinnerungen. S. Hirzel Verlag, Stuttgart (1949)

    Google Scholar 

  77. Plaschke, M., Yngvason, J.: Massless string fields for any helicity. J. Math. Phys. 53, 042301 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  78. Powers, R.T.: Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math. 86, 138–171 (1968)

    Article  MathSciNet  Google Scholar 

  79. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Academic, New York (1975)

    MATH  Google Scholar 

  80. Reeh, H., Schlieder, S.: Eine Bemerkung zur Unitärequivalenz von Lorentzinvarianten Feldern. Nuovo Cimento 22, 1051–1068 (1961)

    Article  MathSciNet  Google Scholar 

  81. Rieffel, M.A., Van Daele, A.: A bounded operator approach to Tomita-Takesaki theory. Pac. J. Math. 69, 187–221 (1977)

    Article  Google Scholar 

  82. Schwartz, J.: Free quantized Lorentzian fields. J. Math. Phys. 2, 271–290 (1960)

    Article  ADS  Google Scholar 

  83. Streater, R.F., Wightman, A.S.: PCT, spin and statistics, and all that. W.A. Benjamin Inc., New York (1964)

    MATH  Google Scholar 

  84. Summers, S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  85. Summers, S.J.: Tomita-Takesaki Modular Theory. In: Francois, J.P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 251–257. Academic Press (2006)

    Google Scholar 

  86. Summers, S.J., Werner, R.F.: On Bell’s inequalities and algebraic invariants. Lett. Math. Phys. 33, 321–334 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and Its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin (1970)

    Google Scholar 

  88. Takesaki, M.: Theory of Operator Algebras II. Springer, New York (2003)

    Book  MATH  Google Scholar 

  89. von Neumann, J.: On rings of operators III. Ann. Math. 41, 94–161 (1940)

    Article  Google Scholar 

  90. Werner, R.F.: Local preparability of states and the split property in quantum field theory. Lett. Math. Phys. 13, 325–329 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  91. Wightman, A.S., Gårding, L.: Fields as operator-valued distributions in relativistic quantum theory. Arkiv før Fysik 28, 129–189 (1965)

    MATH  Google Scholar 

  92. Wigner, E.: On unitary representations of the inhomogeneous Lorentz Group. Ann. Math. Sec. Ser. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  93. Yngvason, J.: Zero-mass infinite spin representations of the Poincaré group and quantum field theory. Commun. Math. Phys. 18, 195–203 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  94. Zych, M., Costa, F., Kofler, J., Brukner, C.: Entanglement between smeared field operators in the Klein-Gordon vacuum. Phys. Rev. D 81, 125019 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the organizers of the Bielefeld workshop, Jürg Fröhlich and Philippe Blanchard, for the invitation that lead to these notes, Detlev Buchholz for critical comments on the text, Wolfgang L. Reiter for drawing my attention to [76], and the Austrian Science Fund (FWF) for support under Project P 22929-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Yngvason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yngvason, J. (2015). Localization and Entanglement in Relativistic Quantum Physics. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_15

Download citation

Publish with us

Policies and ethics