Abstract
Some of us believe that natural sciences are governed by simple and predictive general principles. This hope has not yet been fulfilled in physics for unifying gravitation and quantum mechanics. Epigenetics has shaken the monopoly of the genetic code to determine inheritance (Alberts et al., Molecular Biology of the Cell. Garland, New York, 2008). It is therefore not surprising that quantum mechanics does not explain consciousness or more generally the coherence of the brain in perception, action and cognition. In an other context, others (Tegmark, Phys Rev E 61:4194–4206, 2000) and we (Koch and Hepp, Nature 440:611–612, 2006; Koch and Hepp, Visions of Discovery: New Light on Physics, Cosmology, and Consciousness. Cambridge University Press, Cambridge, 2011) have strongly argued against the absurdity of such a claim, because consciousness is a higher brain function and not a molecular binding mechanism. Decoherence in the warm and wet brain is by many orders of magnitude too strong. Moreover, there are no efficient algorithms for neural quantum computations. However, the controversy over classical and quantum consciousness will probably never be resolved (see e.g. Hepp, J Math Phys 53:095222, 2012; Hameroff and Penrose, Phys Life Rev 11:39–78, 2013).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aaronson, S.: Quantum Computing Since Democritus. Cambridge University Press, Cambridge (2013)
Adrian, E.D.: Olfactory reactions in the brain of the hedgehog. J. Physiol. 100, 459–473 (1942)
Ainsworth, et al.: Rates and rhythms: a synergistic view of frequency and temporal coding in neuronal networks. Neuron 75, 572–583 (2012)
Alberts, B., et al.: Molecular Biology of the Cell, 5th edn. Garland, New York (2008)
Alivisatos, A.P., et al.: The brain activity map. Science 339, 2084–2085 (2013)
Alonso, J.-M., Chen, Y.: Receptive field. Scholarpedia 4(1), 5393 (2009)
Anastassiou, C.A., et al.: Ephaptic coupling of cortical neurons. Nat. Neurosci. 14, 217–223 (2011)
Bardeen, J., et al.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)
Barone, P., et al.: Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J. Neurosci. 20, 3263–3281 (2000)
Bastos, A.M., et al.: Visual areas exert feedforeward and feedback influences through distinct frequency channels. Neuron 85, 1–12 (2015)
Bastos, A.M., et al.: Communication through coherence with interareal delays. Curr. Opin. Neurobiol. 31, 173–180 (2015)
Berényi, A., et al.: Large scale, high density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111, 1132–1143 (2013)
Bichot, N.P., et al.: Parallel and serial mechanisms for visual search in macaque area V4. Science 308, 529–534 (2005)
Blanchard, P., Fröhlich, J.: Message from Quantum Science. Springer, Heidelberg (2015)
Borjigin, J., et al.: Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl. Acad. Sci. 110, 14432–14437 (2013)
Bosman, C.A., et al.: Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75, 875–888 (2012)
Buffalo, E.A., et al.: A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. 107, 361–367 (2010)
Buffalo, E.A., et al.: Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108, 11262–11267 (2011)
Burns, S.P., et al.: Is gamma-band activity in the local field potential of V1 cortex a “clock” or “filtered noise”? J. Neurosci. 31, 9658–9664 (2011)
Buschman, T.J., Miller, E.K.: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007)
Buzsaki, G.: Hippocampus. Scholarpedia 6(1), 1468 (2011)
Buzsaki, G., Wang, X.-J.: Mechanisms of gamma oscillation. Ann. Rev. Neurosci. 35, 203–225 (2012)
Carandini, M.: Area V1. Scholarpedia 7(7), 12105 (2012)
Cardin, J.A., et al.: Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–666 (2009)
Carnevale, N.T., Hines, M.L.: The NEURON Book. Cambridge University Press, Cambridge (2006)
Chalk, M., et al.: Attention reduces stimulus-driven gamma frequency oscillations and spike-field coherence in V1. Neuron 66, 114–125 (2010)
Courtin, J., et al.: Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014)
Da Costa, N.M., Martin, K.A.C.: Sparse reconstructions of brain circuits: or, how to survive without a microscopic connectome. NeuroImage 80, 27–36 (2013)
Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)
DiCarlo, J.J., et al.: How does the brain solve visual object recognition? Neuron 73, 415–434 (2012)
Douglas, R.J., Martin, K.A.: Neural circuits of the neocortex. Ann. Rev. Neurosci. 27, 419–451 (2004)
Eckhorn, R., et al.: Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern. 60, 121–130 (1988)
El-Shamayleh, Y., et al.: Visual response properties of V1 neurons projecting to V2 in macaque. J. Neurosci. 33, 16594–16605 (2013)
Engelhard, B., et al.: Inducing gamma oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 77, 361–375 (2013)
ETH Board Blue Brain Project: Internationale Begutachtung www.ethrat.ch/en/node/1361 (2013)
Fenno, L., et al.: The development and application of optogenetics. Ann. Rev. Neurosci. 35, 389–412 (2011)
Fetz, E.E.: Volitional control of cortical oscillations and synchrony. Neuron 77, 216–218 (2013)
Findlay, J., Walker, R.: Human saccadic eye movements. Scholarpedia 7(7), 5095 (2012)
Freund, T., Kali, S.: Interneurons. Scholarpedia 3(9), 4720 (2008)
Friederici, A.D.: The brain basis of language: from structure to function. Physiol. Rev. 91, 1357–1392 (2011)
Fries, P.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)
Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)
Fries, P., et al.: The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J. Neurosci. 28, 4823–4835 (2008)
Friston, K.J., et al.: DCM for complex-valued data: cross spectra, coherence and phase delays. NeuroImage 59, 439–455 (2012)
Gaillard, R., et al.: Converging intracranial markers of conscious access. PLoS Biol. 7, e1000061 (2009)
Gray, C.M., Singer, W.: Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical functional unit. SfN Abstr. 13, 404.3 (1987)
Gregoriou, G.G., et al.: High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324, 1207–1210 (2009)
Gregoriou, G.G., et al.: Cell-type-specific synchronization of neural activity in FEF with V4 during attention. Neuron 73, 581–594 (2012)
Grothe, I., et al.: Switching neuronal inputs by differential modulations of gamma-band phase-coherence. J. Neurosci. 32, 16172–16180 (2012)
Hameroff, S., Penrose, R.: Conciousness in the universe: A review of the ‘Orch OR’ theory. Phys. Life Rev. 11, 39–78 (2013)
Helmstaedter, M., et al.: Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168–174 (2013)
Hepp, K.: Two models for Josephson oscillators. Ann. Phys. 90, 285–294 (1975)
Hepp, K.: Coherence and decoherence in the brain. J. Math. Phys. 53, 095222 (2012)
Hill, S.L., et al.: Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc. Natl. Acad. Sci. 109, 16772–16773 (2012)
Histed, M.H., Maunsell, J.H.R.: Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl. Acad. Sci. 111, E178–E187 (2013)
James, W.: The Principles of Psychology, p 403. H. Holt, New York (1890)
Jia, X., et al.: Stimulus selectivity and spatial coherence of gamma components of the local field potential. J. Neurosci. 31, 9390–9403 (2011)
Jia, X., et al.: No consistent relationship between gamma power and peak frequency in macaque primary visual cortex. J. Neurosci. 33, 17–25 (2013)
Jia, X., et al.: Gamma and the coordination of spiking in early visual cortex. Neuron 77, 762–774 (2013)
Josephson, B.: Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)
Kajikawa, Y., Schroeder, C.E.: How local is the local field potential? Neuron 72, 847–858 (2011)
Kandel, E.R., et al.: Principles of Neural Science, 5th edn. McGraw-Hill, New York (2013)
Katzner, S., et al.: Local origin of field potentials in visual cortex. Neuron 61, 35–41 (2009)
Khawaja, F.A., et al.: Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J. Neurosci. 29, 13702–13709 (2009)
Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)
Koch, C., Hepp, K.: Quantum mechanics in the brain. Nature 440, 611–612 (2006)
Koch, C., Hepp, K.: In: Chiao, R.J., Cohen, M.L., Legget, A.J., Phillips, W.D., Harper, jr C.L. (eds.) Visions of Discovery: New Light on Physics, Cosmology, and Consciousness. Cambridge University Press, Cambridge (2011)
Kreiter, A.K., Singer, W.: Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci. 16, 2381–2396 (1996)
Lashgari, R., et al.: Response properties of local field potentials and neighboring single neurons in awake primary visual cortex. J. Neurosci. 32, 11396–11413 (2012)
Lepousez, G., Lledo, P.-M.: Odor discrimination requires proper olfactory fast oscillations in awake mice. Neuron 80, 1–15 (2013)
Lewis, D.A.: Inhibitory neurons in human cortical circuits: Substrate for cognitive dysfunction in schizophrenia. Curr. Opin. Neurobiol. 26, 22–26 (2014)
Lima, B., et al.: Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb. Cortex 20, 1556–1573 (2010)
Lucero, E., et al.: Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719–723 (2012)
Markov, T., et al.: A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36 (2013)
Markov, T., et al.: The anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2013)
Markov, T., et al.: Cortical high-density counterstream architectures. Science 342, 1238406 (2013)
Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)
Marshall, L., et al.: Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006)
Miller, E.K., Buschman, T.J.: Cortical circuits for the control of attention. Curr. Opin. Neurobiol. 23, 216–222 (2013)
Moratti, S., et al.: Dynamic gamma frequency feedback coupling between higher and lower order visual cortex underlies perceptual completion in humans. Neuroimage 86, 470–479 (2013)
Murthy, V.N., Fetz, E.E.: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. 89, 5670–5674 (1992)
Nicolic, D., et al.: Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn. Sci. 17, 54–55 (2013)
Palanca, B.J.A., DeAngelis, G.C.: Does neural synchrony underlie visual feature grouping? Neuron 46, 333–346 (2005)
Pannasch, U., Rouach, N.: Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci. 36, 405–417 (2013)
Poggio, T., Serre, T.: Models of visual cortex. Scholarpedia 8(4), 3516 (2013)
Ray, S., Maunsell, J.H.R.: Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67, 885–898 (2010)
Rey, H.G., et al.: Timing of single-neuron and local field potential responses in the human medial temporal lobe. Curr. Biol. 24, 299–304 (2014)
Reimann, M.W., et al.: A biophysically detailed model of neocortical LFPs predicts the critical role of active membrane currents. Neuron 79, 375–390 (2013)
Roberts, M.J., et al.: Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron 78, 523–536 (2013)
Roelfsema, P.R., et al.: Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nat. Neurosci. 7, 982–991 (2004)
Roelfsema, P.R., et al.: Alpha and gamma oscillations as markers of feedforward and feedback processing in areas V1 and V4 of monkey visual cortex. SfN Abstr. 1, 623.03 (2012)
Saalmann, Y.B., et al.: The Pulvinar regulates information transmission between cortical areas on attention demands. Science 337, 753–756 (2012)
Schafer, R.J., et al.: Visual and attentional functions of the lateral pulvinar. SfN Abstr. 673.10 (2012)
Seung, S.: I am my connectome (2010). Video on TED.com
Shafranjuk, S.E., Ketterson, J.B.: Principles of josepson-junction-based quantum computation. In: Bennemann, K.H., Ketterson, J.B., (eds.) Superconductivity, vol 1. Spinger, Berlin (2008)
Shadlen, M.N., Movshon, J.A.: Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999)
Shepherd, G., (ed.): The Synaptic Organization of the Brain. Oxford University Press, Oxford (2004)
Shimamoto, S.A., et al.: Subthalamic nucleus neurons are sychronized to primary motor cortex local field potentials in Parkinson’s disease. J. Neurosci. 33, 7220–7233 (2013)
Singer, W.: Time as coding space in neocortical processing: a hypothesis. In: Gazzaniga, M.S. (ed.) The Cognitive Neurosciences, pp. 91–104. MIT, Cambridge, MA (1997)
Singer, W.: Binding by synchrony. Scholarpedia 2(12), 1657 (2007)
Spaak, E., et al.: Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr. Biol. 22, 2313–2318 (2012)
Spruston, N.: Pyramidal neuron. Scholarpedia 4(5), 6130 (2009)
Squire, L.R., et al.: Fundamental Neuroscience. Elsevier, Amsterdam (2013)
Squire, R.F., et al.: Frontal eye field. Scholarpedia 7(10), 5341 (2012)
Tegmark, M.: Importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000)
Thiele, A., Stoner, G.: Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature 421, 366–370 (2003)
Traub, R.D., et al.: Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J. Neurophysiol. 93, 2194–2232 (2005)
Van Kerkoerle, et al.: Alpha and gamma oscillations characterize feedback and feedforeward processing in monkey visual cortex. Proc. Natl. Acad. Sci. 111, 14332–14341 (2014)
Vezoli, J., et al.: Extracting structure from function: Inter-areal causal interactions at gamma and beta rhythms reveal cortical hierarchical relationships. SfN Abstr. 723.10 (2012)
Vinck, M., et al.: Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area V4. Neuron 80, 1077–1089 (2013)
Von der Malsburg, C.: The correlation theory of brain function. In: Domany, E., Van Hemmen, J.L., Schulten, K. (eds.) MPI Biophysical Chemistry, Internal Report 81-2. Reprinted in Models of Neural Networks II (1994). Spinger, Berlin (1981)
Wang, X.-J.: Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010)
Womelsdorf, T., et al.: Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439, 733–736 (2006)
Womelsdorf, T., et al.: Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609–1612 (2007)
Xing, D., et al.: Stochastic generation of gamma band activity in the primary visual cortex of awake and anesthetized monkeys. J. Neurosci. 32, 13873–13880 (2012)
Acknowledgements
I am grateful to my colleagues in the Physics Department of the ETHZ, Jürg Fröhlich, Hans-Ruedi Ott and Thomas Schulthess, for listening to my concerns about the BBP. I have learnt most about neuroscience from the late neurologist Volker Henn and from collaborations in the Institute of Neuroinformatics in Zürich. Constructive remarks by Pascal Fries and Kevan Martin have been very helpful, but all misrepresentations are mine.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hepp, K. (2015). Computation Through Neuronal Oscillations. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-662-46422-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46421-2
Online ISBN: 978-3-662-46422-9
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)