Skip to main content

Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

  • Chapter
The Message of Quantum Science

Part of the book series: Lecture Notes in Physics ((LNP,volume 899))

  • 1865 Accesses

Abstract

Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann’s residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert’s opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not consider random dynamics on  given by some continuous Markov chain.

  2. 2.

    Bell worked within the Hamiltonian formulation and without averaging over the degrees of freedom of the environment.

  3. 3.

    We recall that the algebra \(\mathcal{A}_{1}\) is the algebra of all complex 2 × 2-matrices.

  4. 4.

    We mean the image of R t under the identification of \(\mathcal{W}(V _{-})\) and \(\mathcal{A}\mathcal{C}(\mathbb{R})\).

References

  1. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 717, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  2. Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bell, J.S.: On wave packet reduction in the Coleman–Hepp model. Helv. Phys. Acta 48, 93–98 (1975)

    MATH  MathSciNet  Google Scholar 

  4. Blanchard, Ph., Olkiewicz, R.: Decoherence induced transition from quantum to classical dynamics. Rev. Math. Phys. 15, 217–243 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanchard, Ph., Olkiewicz, R.: Decoherence induced continuous pointer states. Phys. Rev. Lett. 90, 010403 (2003)

    Article  ADS  Google Scholar 

  6. Blanchard, Ph., Ługiewicz, P., Olkiewicz, R.: From quantum to quantum via decoherence. Phys. Lett. A 314, 29–36 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Blanchard, Ph., Hellmich, M., Ługiewicz, P., Olkiewicz, R. Quantum dynamical semigroups for finite and infinite Bose systems. J. Math. Phys. 48, 012106 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Blanchard, Ph., Hellmich, M., Ługiewicz, P., Olkiewicz, R.: Continuity and generators of dynamical semigroups for infinite Bose systems. J. Funct. Anal. 256, 1453–1475 (2009); Corrigendum: J. Funct. Anal. 259, 2455–2456 (2010)

    Google Scholar 

  9. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 2, 2nd edn. Springer, New York (1997)

    Google Scholar 

  10. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  11. Jaffe, A.: Constructive quantum field theory. In: Mathematical Physics 2000, p. 111. Imperial College Press, London (2000)

    Google Scholar 

  12. Joos, E.: Decoherence through interaction with the environment. In: Giulini, D., et al. (eds.) Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Chapter  Google Scholar 

  13. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Z. Phys. B: Condens. Matter 59, 223–243 (1985)

    Article  ADS  Google Scholar 

  14. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras: Advanced Theory, 2nd print. American Mathematical Society, Providence (2002)

    Google Scholar 

  15. Landsman, N.P.: Quantization and superselection sectors I. Transformation group C*-algebras. Rev. Math. Phys. 2, 45–72 (1990)

    Google Scholar 

  16. Leader, E., Predazzi, E.: An Introduction to Gauge Theories and the New Physics. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  17. Ługiewicz, P., Olkiewicz, R.: Decoherence in infinite quantum systems. J. Phys. A: Math. Gen. 35, 6695–6712 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Ługiewicz, P., Olkiewicz, R.: Classical properties of infinite quantum open systems. Commun. Math. Phys. 239, 241–259 (2003)

    Article  ADS  MATH  Google Scholar 

  19. Manuceau, J.: C*-algèbre de relations de commutation. Ann. Inst. Henri Poincare 2, 139–161 (1968)

    MathSciNet  Google Scholar 

  20. Olkiewicz, R.: Environment-induced superselection rules in Markovian regime. Commun. Math. Phys. 208, 245–265 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Paz, J.P., Zurek, W.H.: Environment-induced decoherence, classicality and consistency of quantum histories. Phys. Rev. D 48, 2728–2738 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness, vol. 2. Academic, New York (1975)

    MATH  Google Scholar 

  23. Sahlmann, H.: Loop quantum gravity—a short review. arXiv:1001.4188v3 [gr-qc]. http://arxiv.org/abs/1001.4188 (2011)

  24. Sakai, S.: Operator Algebras in Dynamical Systems. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  25. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  26. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935)

    Google Scholar 

  27. Wick, G.C., Wightmann, A.S., Wigner, E.P.: The intrinsic parity of elementary particles. Phys. Rev. 88, 101–105 (1952)

    Article  ADS  MATH  Google Scholar 

  28. Zeh, H.D.: Physik ohne Realität: Tiefsinn oder Wahnsinn? Springer, Berlin (2012)

    Book  Google Scholar 

  29. Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zurek, W.: Environment induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zurek, W.H.: Decoherence and the transition from quantum to classical revisited. In: Quantum Decoherence, Poincaré Seminar 2005. Progress in Mathematical Physics, vol. 48. Birkhäuser, Basel (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Blanchard .

Editor information

Editors and Affiliations

Appendix

Appendix

Sketch of Proof of Theorem 7

The proof is organized by successively proving the following three properties.

P1 :

\(x \in L^{\infty }(\pi _{\omega _{0}}(A))\) if and only if \(\left [\pi _{\omega _{0}}(A),\left [\pi _{\omega _{0}}(A),x\right ]\right ] = 0\).

P2 :

\(L^{\infty }(\pi _{\omega _{0}}(A)) \cap L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0})) = \mathbb{C}{\!1\!\!1}\).

P3 :

\(\mathfrak{M} = \mathbb{C}{\!1\!\!1}\) if and only if \(\ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})' = \mathbb{C}{\!1\!\!1}\).

Given these properties the proof is easily carried through. If \(x \in \ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})'\) then \([\pi _{\omega _{0}}(A),[\pi _{\omega _{0}}(A),x]] = 0\) and [H S, x] = 0. Consequently, by P1 we get \(x \in L^{\infty }(\pi _{\omega _{0}}(A))\), and hence \([\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}),x] = [H_{\mathrm{S}},x] = 0\), i.e., \(x \in L^{\infty }(\pi _{\omega _{0}}(A)) \cap L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0})) = \mathbb{C}{\!1\!\!1}\) according to P2. In this way we obtained \(\ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})' = \mathbb{C}{\!1\!\!1}\), i.e., \(\mathfrak{M} = \mathbb{C}{\!1\!\!1}\) according to P3. To complete the proof we therefore need to establish properties P1, P2 and P3.

Proof of P1 : :

We start by proving the direction “ ⇐ ”. Let us define the derivation \(\delta _{x}(\cdot ) = \mathrm{i}[\cdot,x]\). If \([\pi _{\omega _{0}}(A),[\pi _{\omega _{0}}(A),x]] = 0\) then \([\pi _{\omega _{0}}(A),x] \in L^{\infty }(\pi _{\omega _{0}}(A))\) as \(L^{\infty }(\pi _{\omega _{0}}(A))\) is m. a. s. a. (see the proof of P2 below). Let P be any polynomial, then

$$\displaystyle{\delta _{x}(P(\pi _{\omega _{0}}(A))) = \mathrm{i}[P(\pi _{\omega _{0}}(A)),x] = \mathrm{i}[\pi _{\omega _{0}}(A),xP'(\pi _{\omega _{0}}(A))] \in L^{\infty }(\pi _{\omega _{ 0}}(A)).}$$

This means that \(\delta _{x}(L^{\infty }(\pi _{\omega _{0}}(A))) \subseteq L^{\infty }(\pi _{\omega _{0}}(A))\) since δ x is continuous in the weak operator topology. But \(L^{\infty }(\pi _{\omega _{0}}(A))\) is abelian, thus δ x (E) = 0 for any projector E from the domain of the derivation δ x . On the other hand, δ x is defined on the whole algebra and in particular L (π(A)) is contained in its domain. Hence

$$\displaystyle{\delta _{x} \upharpoonright _{L^{\infty }(\pi _{\omega _{ 0}}(A))} = 0.}$$

In particular, \([\pi _{\omega _{0}}(A),x] = -\mathrm{i}\delta _{x}(\pi _{\omega _{0}}(A)) = 0\). But \(L^{\infty }(\pi _{\omega _{0}}(A))\) is a m. a. s. a., hence \(x \in L^{\infty }(\pi _{\omega _{0}}(A))\). The proof of the converse is obvious.

Proof of P2 : :

Let \(C_{3} \subseteq \mathcal{A}\) be C*-algebra generated by the set

$$\displaystyle{\{\sigma _{i_{1}} \otimes \cdots \otimes \sigma _{i_{n}}\otimes{\!1\!\!1} \otimes \cdots \,,\ i_{k} = 0,3\ \text{for}\ k = 1,\ldots,n,\ n = 1,2,\ldots \}.}$$

Then \(\pi _{\omega _{0}}(C_{3})''\) is a m. a. s. a. If we substitute σ 3 by σ 1 we can define C 1 in a similar fashion and get another m. a. s. a. \(\pi _{\omega _{0}}(C_{1})''\). Evidently, \(\pi _{\omega _{0}}(C_{3})'' \cap \pi _{\omega _{0}}(C_{1})'' = \mathbb{C}{\!1\!\!1}\). Now the choice of the sequences \(\{h_{l}\}_{l=1,2,\ldots }\) and \(\{a_{l}\}_{l=1,2,\ldots }\) in the statement of the Theorem ensures that \(L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0})) =\pi _{\omega _{0}}(C_{3})''\), and \(L^{\infty }(\pi _{\omega _{0}}(A)) =\pi _{\omega _{0}}(C_{1})''\) as is proven below. Let us introduce some notation. As the Cantor set \(\mathcal{C}\) is homeomorphic to {0, 1}× we shall use the representation of elements \(\omega \in \mathcal{C}\) by

$$\displaystyle{\omega \equiv \{ i_{1},i_{2},\ldots \}\quad \text{with}\ i_{1},i_{2},\ldots \in \{ 0,1\}.}$$

We say that two elements ω 0 and ω 1 constitute a pair of adjoint points if

$$\displaystyle\begin{array}{rcl} \omega _{0}& =& \{i_{1},i_{2},\ldots,i_{m},0,1,1,1,\ldots \}\quad \text{and} {}\\ \omega _{1}& =& \{i_{1},i_{2},\ldots,i_{m},1,0,0,0,\ldots \} {}\\ \end{array}$$

for some non-negative integer m. Let \(\mathcal{C}_{0}\) be the set of pairs of adjoint points. Moreover, let \(\Phi:\pi _{\omega _{0}}(C_{3})\longrightarrow C(\mathcal{C})\) denote the Gelfand–Naimark isomorphism, where \(C(\mathcal{C})\) is the set of all continuous functions defined on Cantor set. Let us consider the unique extension of \(\Phi \) to the normal isomorphism \(\Psi:\pi _{\omega _{0}}(C_{3})''\longrightarrow L^{\infty }(\mathcal{C},\mu )\), where \(\mu =\prod \mu _{0}\) with the measure μ 0 on {0, 1} defined by \(\mu _{0}(\{0\}) =\mu _{0}(\{1\}) = \frac{1} {2}\).

Finally, \(C_{0}(\mathcal{C})\) is the set of all continuous functions f such that f(ω 0) = f(ω 1) for some pair of adjoint points ω 0 and ω 1. Let \(h = \Phi (\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}))\), then

$$\displaystyle{h(\{i_{1},i_{2},\ldots \}) =\sum _{ l=1}^{\infty }(-1)^{i_{l} }h_{l}.}$$

We can evaluate the difference at the pair of adjoint points to obtain

$$\displaystyle{h(\omega _{0}) - h(\omega _{1}) = 2{\Bigl (h_{m+1} -\sum _{l=m+2}^{\infty }h_{ l}\Bigr )} \geq 0,}$$

so the function h takes different values to different points, except perhaps a pair of adjoint points of \(\mathcal{C}_{0}\). Repeating the standard argument we get \(C_{0}(\mathcal{C}) \subseteq \Phi (C^{{\ast}}({\!1\!\!1},\pi _{\omega _{0}}(H_{\mathrm{S}}^{0})))\), where C (D) denotes the smallest C*-algebra generated by the set D.

Let \(P_{i_{1}i_{2}\cdots i_{m}} =\pi _{\omega _{0}}(P_{i_{1}} \otimes P_{i_{2}} \otimes \cdots \otimes P_{i_{m}}\otimes{\!1\!\!1} \otimes \cdots \,)\) be one of the generating projectors of π(C 3). Then

$$\displaystyle{ P_{i_{1}i_{2}\cdots i_{m}} \in L^{\infty }(\pi _{\omega _{ 0}}(H_{\mathrm{S}}^{0})) }$$
(1.16)

for any i 1, i 2, , i m  ∈ { 0, 1}, and m = 1, 2, . Consequently, \(\pi _{\omega _{0}}(C_{3}) \subseteq L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}))\) and hence \(\pi _{\omega _{0}}(C_{3})'' \subseteq L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}))\). We give the proof of (1.16) only in the special case of the projector P 0 (m = 1, i 1 = 0) to avoid the complex notation of the general case. Let {f n } be the sequence in \(C_{0}(\mathcal{C})\) given by

$$\displaystyle{f(\{i_{1},i_{2},\ldots \}) = \left \{\begin{array}{@{}l@{\quad }l@{}} 1 \quad &: i_{1} = 0 \\ \frac{1} {2} +\sum _{ l=1}^{\infty }(-1)^{i_{n}+l} \frac{1} {2^{l+1}}\quad &: i_{1} = 1,\ \sum _{l=2}^{n}i_{ l} = 0 \\ 0 \quad &: i_{1} = 1,\ \sum _{l=2}^{n}i_{ l}\not =0\end{array} \right.,}$$

where \(0 \leq f_{n+1} \leq f_{n} \leq 1\) for n = 1, 2, . As \(f_{n} \in C_{0}(\mathcal{C})\), there exists \(F_{n} \in C^{{\ast}}({\!1\!\!1},\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}))\) such that \(f_{n} = \Phi (F_{n})\) and moreover \(0 \leq F_{n+1} \leq F_{n} \leq{\!1\!\!1}\) for all n = 1, 2, . Hence F n  → F in the strong operator topology. The map \(\Psi \) is normal, hence \(1 - \Psi (F) =\sup (1 - f_{n}) = 1 - \Psi (P_{0})\), where we have used μ({1, 0, 0, }) = 0. Consequently, \(P_{0} = F \in L^{\infty }(\pi _{\omega _{0}}(H_{\mathrm{S}}^{0}))\). This ends the proof of P2.

Proof of P3 : :

We start by proving the direction “ ⇐ ”. Using (1.11) we deduce that \(\delta _{H_{\mathrm{S}}}(\mathfrak{M}) \subseteq \mathfrak{M}\), so we can introduce another derivation defined by

$$\displaystyle{\delta _{1} \equiv \delta _{H_{\mathrm{S}}} \upharpoonright _{\mathfrak{M}}.}$$

The derivation δ 1 is inner, i.e., \(\delta _{1}(\cdot ) = \mathrm{i}[H_{1},\cdot ]\) for some Hermitian operator \(H_{1} \in \mathfrak{M}\) (see, e.g., [24]). In particular, for each spectral projector \(P \in L^{\infty }(H_{1})\) we get \(P \in \ker L_{\mathrm{D}}\). On the other hand, \([H_{\mathrm{S}},P] = -\mathrm{i}\delta _{1}(P) = [H_{1},P] = 0\), hence \(P \in L^{\infty }(H_{\mathrm{S}})'\). Summarizing, we have \(P \in \ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})' = \mathbb{C}{\!1\!\!1}\). This means that \(H_{1} =\lambda{\!1\!\!1}\), and consequently \([H_{\mathrm{S}},x] = -\mathrm{i}\delta _{1}(x) = [\lambda{\!1\!\!1},x] = 0\) for any \(x \in \mathfrak{M}\). We conclude that \(\mathfrak{M} \subseteq \ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})' = \mathbb{C}{\!1\!\!1}\).

For the direction “ ⇒ ” notice that for a projector \(P \in L^{\infty }(H_{\mathrm{S}})'\) we have [H S, P] = 0 and hence \(L_{\mathrm{D}} \circ \delta _{H_{\mathrm{S}}}^{m} = 0\) for any m = 1, 2, . This means that \(P \in \mathfrak{M}\) if and only if \(P \in \ker L_{\mathrm{D}}\). Consequently, if \(P \in \ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})'\) then \(P \in \mathfrak{M} = \mathbb{C}{\!1\!\!1}\). This in turn means that \(P ={\!1\!\!1}\) or P = 0. Hence \(\ker L_{\mathrm{D}} \cap L^{\infty }(H_{\mathrm{S}})' = \mathbb{C}{\!1\!\!1}\).

 □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanchard, P., Hellmich, M., Ługiewicz, P., Olkiewicz, R. (2015). Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach. In: Blanchard, P., Fröhlich, J. (eds) The Message of Quantum Science. Lecture Notes in Physics, vol 899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46422-9_1

Download citation

Publish with us

Policies and ethics