Abstract
Immunotherapy has been increasingly applied in the treatment of various malignancies in recent decades. Considering the suboptimal results obtained by applying other treatment modalities in the treatment of non-Hodgkin’s lymphoma (NHL), as well as the considerable morbidity posed by the condition, attention has been drawn to immunotherapy as an efficient alternative or complement therapy. In light of the unique immunopathology of NHL, it is recognized as a suitable target for immunotherapy. This chapter seeks to discuss a wide spectrum of immunotherapeutic approaches, ranging from initial monoclonal antibodies (mAbs) to novel techniques developed in recent years, which are still in their infancy. In addition to mAbs as a separate entity, their efficacy in combination with other modalities including chemotherapy and radiotherapy has been provided. Since a clear concept of the pathobiology of NHL would aid in efficient immunotherapy, a brief description with an emphasis on suitable targets for immunotherapy is given before discussing various immunotherapies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lunning MA, Vose JM. Management of indolent lymphoma: where are we now and where are we going. Blood Rev. 2012;26(6):279–88.
Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-López AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol. 2004;22(23):4711–6.
Robert N, Leyland-Jones B, Asmar L, Belt R, Ilegbodu D, Loesch D, et al. Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2–overexpressing metastatic breast cancer. J Clin Oncol. 2006;24(18):2786–92.
Neuberger M, Williams G, Mitchell E, Jouhal S, Flanagan J, Rabbitts T. A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature. 1985;314(6008):268–70.
Foon KA. Immunologic classification of leukemia and lymphoma. Blood. 1986;68(1):1–31.
Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annus Rev Immunol. 2000;18(1):739–66.
Konjevic G, Jurisic V, Jovic V, Vuletic A, Martinovic KM, Radenkovic S, et al. Investigation of NK cell function and their modulation in different malignancies. Immunol Res. 2012;52(1–2):139–56.
Gerber H-P. Emerging immunotherapies targeting CD30 in Hodgkin’s lymphoma. Biochem Pharmacol. 2010;79(11):1544–52.
Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6(5):343–57.
Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S, Abken H, et al. An Il12-Il2-antibody fusion protein targeting Hodgkin’s lymphoma cells potentiates activation of Nk and T cells for an anti-tumor attack. PLoS One. 2012;7(9):e44482.
Brody J, Levy R. Lymphoma immunotherapy: vaccines, adoptive cell transfer and immunotransplant. Immunotherapy. 2009;1(5):809–24.
Grille S, Moreno M, Brugninib A, Lensb D, Chabalgoity J. A therapeutic vaccine using Salmonella-modified tumor cells combined with interleukin-2 induces enhanced antitumor immunity in B-cell lymphoma. Leuk Res. 2012;37:341–8.
van Meerten T, Hagenbeek A. Novel antibodies against follicular non-Hodgkin’s lymphoma. Best Pract Res Clin Haematol. 2011;24(2):231–56.
Rimsza LM, Roberts RA, Miller TP, Unger JM, LeBlanc M, Braziel RM, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood. 2004;103(11):4251–8.
Miller TP, Lippman SM, Spier CM, Slymen DJ, Grogan TM. HLA-DR (Ia) immune phenotype predicts outcome for patients with diffuse large cell lymphoma. J Clin Invest. 1988;82(1):370.
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti‐tumor immunity. Immunol Rev. 2009;229(1):126–44.
Chambers CA. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 2001;22(4):217–23.
Linderoth J, Ehinger M, Jerkeman M, Bendahl P-O, Åkerman M, Berglund M, et al. CD40 expression identifies a prognostic ally favourable subgroup of diffuse large B-cell lymphoma. Leuk Lymph. 2007;48(9):1774–9.
Stopeck AT, Gessner A, Miller TP, Hersh EM, Johnson CS, Cui H, et al. Loss of B7. 2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma. Clin Cancer Res. 2000;6(10):3904–9.
Tiemessen MM, Baert MR, Schonewille T, Brugman MH, Famili F, Salvatori DC, et al. The nuclear effector of Wnt-signaling, Tcf1, functions as a T-cell–specific tumor suppressor for development of lymphomas. PLoS Biol. 2012;10(11):e1001430.
Böckle B, Stanarevic G, Ratzinger G, Sepp N. Analysis of 303 Ro/SS‐A antibody‐positive patients: is this antibody a possible marker for malignancy? Br J Dermatol. 2012;167(5):1067–75.
Vera‐Recabarren M, García‐Carrasco M, Ramos‐Casals M, Herrero C. Comparative analysis of subacute cutaneous lupus erythematosus and chronic cutaneous lupus erythematosus: clinical and immunological study of 270 patients. Br J Dermatol. 2010;162(1):91–101.
Chiarle R, Podda A, Prolla G, Gong J, Thorbecke GJ, Inghirami G. CD30 in normal and neoplastic cells. Clin Immunol. 1999;90(2):157–64.
Yurchenko M, Sidorenko S. Hodgkin’s lymphoma: the role of cell surface receptors in regulation of tumor cell fate. Exp Oncol. 2010;32(4):214–23.
Zinzani PL, Bendandi M, Martelli M, Falini B, Sabattini E, Amadori S, et al. Anaplastic large-cell lymphoma: clinical and prognostic evaluation of 90 adult patients. J Clin Oncol. 1996;14(3):955–62.
Vega F. Time to look for CD30 expression in diffuse large B cell lymphomas, along the way to immunotherapy. Leuk Lymph. 2013;54:2341–2.
Borchmann P, Treml JF, Hansen H, Gottstein C, Schnell R, Staak O, et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood. 2003;102(10):3737–42.
Horn‐Lohrens O, Tiemann M, Lange H, Kobarg J, Hafner M, Hansen H, et al. Shedding of the soluble form of CD30 from the Hodgkin‐analogous cell line L540 is strongly inhibited by a new CD30‐specific antibody (Ki‐4). Int J Cancer. 1995;60(4):539–44.
H-J GUSS, DaSilva N, Z-B HU, Uphoff C, Goodwin R, Drexler H. Expression and regulation of CD30 ligand and CD30 in human leukemia-lymphoma cell lines. Leukemia. 1994;8(12):2083–94.
Gruss H, Boiani N, Williams D, Armitage R, Smith C, Goodwin R. Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood. 1994;83(8):2045–56.
Mir SS, Richter BW, Duckett CS. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood. 2000;96(13):4307–12.
Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res. 2002;62(13):3736–42.
Duvic M, Reddy SA, Pinter-Brown L, Korman NJ, Zic J, Kennedy DA, et al. A phase II study of SGN-30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res. 2009;15(19):6217–24.
Bartlett NL, Younes A, Carabasi MH, Forero A, Rosenblatt JD, Leonard JP, et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood. 2008;111(4):1848–54.
Forero‐Torres A, Leonard JP, Younes A, Rosenblatt JD, Brice P, Bartlett NL, et al. A Phase II study of SGN‐30 (anti‐CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9.
Tedder TF, Schlossman SF. Phosphorylation of the B1 (CD20) molecule by normal and malignant human B lymphocytes. J Biol Chem. 1988;263(20):10009–15.
van Meerten T, Hagenbeek A, editors. CD20-targeted therapy: the next generation of antibodies. Semin Hematol. 2010;47(2):199–210.
Till BG, Press OW. Treatment of lymphoma with adoptively transferred T cells. Expert Opin Biol Ther. 2009;9(11):1407–25.
Li H, Ayer LM, Lytton J, Deans JP. Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem. 2003;278(43):42427–34.
Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun. 2005;8:140–74.
Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44(16):3823–37.
Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell–mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.
Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99(3):1038–43.
Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–7.
Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes. J Immunol. 2006;176(4):2600–9.
Bowles JA, Wang S-Y, Link BK, Allan B, Beuerlein G, Campbell M-A, et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 2006;108(8):2648–54.
Koene HR, Kleijer M, Algra J, et al. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;3(90):1109–14.
Peipp M, van de Winkel JG, Valerius T. Molecular engineering to improve antibodies’ anti-lymphoma activity. Best Pract Res Clin Haematol. 2011;24(2):217–29.
McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.
Maloney DG, Grillo-López AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.
Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26.
Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105(4):1417–23.
Hosono M, Endo K, Sakahara H, Watanabe Y, Saga T, Nakai T, et al. Human/mouse chimeric antibodies show low reactivity with human anti-murine antibodies (HAMA). Br J Cancer. 1992;65(2):197.
Chinn P, Braslawsky G, White C, Hanna N. Antibody therapy of non-Hodgkin’s B-cell lymphoma. Cancer Immunol Immunother. 2003;52(5):257–80.
Dahle J, Repetto-Llamazares AH, Mollatt CS, Melhus KB, Bruland ØS, Kolstad A, et al. Evaluating antigen targeting and anti-tumor activity of a new anti-CD37 radioimmunoconjugate against non-Hodgkin’s lymphoma. Anticancer Res. 2013;33(1):85–95.
Ratanatharathorn V, Pavletic S, Uberti JP. Clinical applications of rituximab in allogeneic stem cell transplantation: anti-tumor and immunomodulatory effects. Cancer Treat Rev. 2009;35(8):653–61.
Johnson P, Glennie M, editors. The mechanisms of action of rituximab in the elimination of tumor cells. Semin Oncol. 2003;30(1 Suppl 2):3–8.
Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood. 2004;103(7):2738–43.
Maloney DG, Grillo-López AJ, Bodkin DJ, White CA, Liles T-M, Royston I, et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol. 1997;15(10):3266–74.
Coiffier B, Lepage E, Brière J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42.
Tobinai K, Kobayashi Y, Narabayashi M, Ogura M, Kagami Y, Morishima Y, et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. Ann Oncol. 1998;9(5):527–34.
Hamaguchi Y, Uchida J, Cain DW, Venturi GM, Poe JC, Haas KM, et al. The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. J Immunol. 2005;174(7):4389–99.
Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor–dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199(12):1659–69.
Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174(2):817–26.
Maloney D, Liles T, Czerwinski D, Waldichuk C, Rosenberg J, Grillo-Lopez A, et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood. 1994;84(8):2457–66.
Feuring-Buske M, Kneba M, Unterhalt M, Engert A, Gramatzki M, Hiller E, et al. IDEC-C2B8 (rituximab) anti-CD20 antibody treatment in relapsed advanced-stage follicular lymphomas: results of a phase-II study of the German Low-Grade Lymphoma Study Group. Ann Hematol. 2000;79(9):493–500.
Davis T, White C, Grillo-Lopez A, Velasquez W, Link B, Maloney D, et al. Single-agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma: results of a phase II trial of rituximab. J Clin Oncol. 1999;17(6):1851.
Colombat P, Salles G, Brousse N, Eftekhari P, Soubeyran P, Delwail V, et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood. 2001;97(1):101–6.
Hainsworth JD, Litchy S, Burris HA, Scullin DC, Corso SW, Yardley DA, et al. Rituximab as first-line and maintenance therapy for patients with indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(20):4261–7.
Ardeseina K, Qian W, Smith P, Warden J, Stevens L, Pocock CF, et al. An intergroup randomised trial of rituximab versus a watch and wait strategy in patients with stage II, III, IV, asymptomatic, non-bulky follicular lymphoma (grades 1, 2 and 3a) a preliminary analysis. Lancet. 2010;15(4):424–35.
Schulz H, Bohlius J, Skoetz N, Trelle S, Kober T, Reiser M, et al. Chemotherapy plus rituximab versus chemotherapy alone for B-cell non-Hodgkin’s lymphoma. Cochrane Database Syst Rev. 2007;4:CD003805.
Van Oers MH, Van Glabbeke M, Giurgea L, Klasa R, Marcus RE, Wolf M, et al. Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin’s lymphoma: long-term outcome of the EORTC 20981 phase III randomized intergroup study. J Clin Oncol. 2010;28(17):2853–8.
Salles G, Seymour J, Feugier P, Offner F, Lopez-Guillermo A, Bouabdallah R, et al. Rituximab maintenance for 2 years in patients with untreated high tumor burden follicular lymphoma after response to immunochemotherapy. J Clin Oncol. 2010;28(15S):8004.
van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebeling SB. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res. 2006;12(13):4027–35.
Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R, et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 2007;67(21):10556–63.
Wang S-Y, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood. 2008;111(3):1456–63.
Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5(3):611–5.
Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 2009;114(16):3367–75.
Vugmeyster Y, Beyer J, Howell K, Combs D, Fielder P, Yang J, et al. Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J Immunother. 2005;28(3):212–9.
Briones J. Emerging therapies for B-cell non-Hodgkin lymphoma. Expert Rev Anticancer Ther. 2009;9(9):1305–16.
Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 2002;99(3):754–8.
Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.
Anolik JH, Campbell D, Felgar RE, Young F, Sanz I, Rosenblatt J, et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 2003;48(2):455–9.
Rothe A, Schulz H, Elter T, Engert A, Reiser M. Rituximab monotherapy is effective in patients with poor risk refractory aggressive non-Hodgkin’s lymphoma. Haematologica. 2004;89(7):875–6.
Leonard J, Friedberg J, Younes A, Fisher D, Gordon L, Moore J, et al. A phase I/II study of galiximab (an anti-CD80 monoclonal antibody) in combination with rituximab for relapsed or refractory, follicular lymphoma. Ann Oncol. 2007;18(7):1216–23.
Rule S, Smith P, Johnson PW, Bolam S, Follows GA, Gambell J et al., editors. The addition of rituximab to fludarabine and cyclophosphamide (FC) improves overall survival in newly diagnosed mantle cell lymphoma (MCL): results of the randomised UK National Cancer Research Institute (NCRI) trial. Blood. 2011;118(21):440.
Schulz H, Bohlius JF, Trelle S, Skoetz N, Reiser M, Kober T, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99(9):706–14.
Forstpointner R, Dreyling M, Repp R, Hermann S, Hänel A, Metzner B, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104(10):3064–71.
Griffiths R, Mikhael J, Gleeson M, Danese M, Dreyling M. Addition of rituximab to chemotherapy alone as first-line therapy improves overall survival in elderly patients with mantle cell lymphoma. Blood. 2011;118(18):4808–16.
Martin P, Smith M, Till B. Management of mantle cell lymphoma in the elderly. Best Pract Res Clin Haematol. 2012;25(2):221–31.
Heinzelmann F, Ottinger H, Engelhard M, Soekler M, Bamberg M, Weinmann M. Advanced-stage III/IV follicular lymphoma. Strahlenther Onkol. 2010;186(5):247–54.
Ghielmini M, Schmitz S-FH, Cogliatti SB, Pichert G, Hummerjohann J, Waltzer U, et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly × 4 schedule. Blood. 2004;103(12):4416–23.
Herold M, Haas A, Srock S, Neser S, Al-Ali KH, Neubauer A, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25(15):1986–92.
Gisselbrecht C. Use of rituximab in diffuse large B‐cell lymphoma in the salvage setting. Br J Haematol. 2008;143(5):607–21.
Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23(18):4117–26.
Coiffier B, Feugier P, Mounier N, Franchi-Rezgui P, Van Den Neste E, Macro M et al., editors. Long-term results of the GELA study comparing R-CHOP and CHOP chemotherapy in older patients with diffuse large B-cell lymphoma show good survival in poor-risk patients. J Clin Oncol (Meeting Abstracts). 2007;25(18_Suppl):8009.
Kewalramani T, Zelenetz AD, Nimer SD, Portlock C, Straus D, Noy A, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103(10):3684–8.
Zelenetz A, Hamlin P, Kewalramani T, Yahalom J, Nimer S, Moskowitz C. Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2002;14:i5–10.
Mey UJ, Orlopp KS, Flieger D, Strehl JW, Ho AD, Hensel M, et al. Dexamethasone, high-dose cytarabine, and cisplatin in combination with rituximab as salvage treatment for patients with relapsed or refractory aggressive non-Hodgkin’s lymphoma. Cancer Invest. 2006;24(6):593–600.
Vellenga E, van Putten WL, van’t Veer MB, Zijlstra JM, Fibbe WE, van Oers MH, et al. Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial. Blood. 2008;111(2):537–43.
Corazzelli G, Capobianco G, Arcamone M, Ballerini PF, Iannitto E, Russo F, et al. Long-term results of gemcitabine plus oxaliplatin with and without rituximab as salvage treatment for transplant-ineligible patients with refractory/relapsing B-cell lymphoma. Cancer Chemother Pharmacol. 2009;64(5):907–16.
Rigacci L, Fabbri A, Puccini B, Chitarrelli I, Chiappella A, Vitolo U, et al. Oxaliplatin‐based chemotherapy (dexamethasone, high‐dose cytarabine, and oxaliplatin)±rituximab is an effective salvage regimen in patients with relapsed or refractory lymphoma. Cancer. 2010;116(19):4573–9.
Cabanillas F, Liboy I, Rodriguez-Monge E, Pavia O, Robles N, Maldonado N, et al. A dose dense low toxicity salvage regimen for histologically aggressive non-Hodgkin’s lymphoma (NHL): gemcitabine, rituximab, oxaliplatin combination (GROC) plus pegfilgrastim. J Clin Oncol. 2006;24(June20Suppl):17513.
Nyman H, Adde M, Karjalainen-Lindsberg M-L, Taskinen M, Berglund M, Amini R-M, et al. Prognostic impact of immunohistochemically defined germinal center phenotype in diffuse large B-cell lymphoma patients treated with immunochemotherapy. Blood. 2007;109(11):4930–5.
Chan HC, Hughes D, French RR, Tutt AL, Walshe CA, Teeling JL, et al. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res. 2003;63(17):5480–9.
Li B, Zhao L, Guo H, Wang C, Zhang X, Wu L, et al. Characterization of a rituximab variant with potent antitumor activity against rituximab-resistant B-cell lymphoma. Blood. 2009;114(24):5007–15.
Li B, Shi S, Qian W, Zhao L, Zhang D, Hou S, et al. Development of novel tetravalent anti-CD20 antibodies with potent antitumor activity. Cancer Res. 2008;68(7):2400–8.
Davis TA, Grillo-López AJ, White CA, McLaughlin P, Czuczman MS, Link BK, et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol. 2000;18(17):3135–43.
Morschhauser F, Marlton P, Vitolo U, Lindén O, Seymour J, Crump M, et al. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol. 2010;21(9):1870–6.
Morschhauser F, Leonard JP, Fayad L, Coiffier B, Petillon M-O, Coleman M, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin’s lymphoma: phase I/II results. J Clin Oncol. 2009;27(20):3346–53.
Hagenbeek A, Gadeberg O, Johnson P, Pedersen LM, Walewski J, Hellmann A, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111(12):5486–95.
Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.
Bowles JA, Weiner GJ. CD16 polymorphisms and NK activation induced by monoclonal antibody-coated target cells. J Immunol Methods. 2005;304(1):88–99.
Barth M, Hernandez-Ilizaliturri F, Mavis C, Tsai P, Gibbs J, Czuczman M, editors. Activity of ofatumumab (OFA), a fully human monoclonal antibody targeting CD20, against rituximab (RTX)-sensitive (RSCL) and rituximab-resistant cell lines (RRCL), in vivo, and primary tumor cells derived from patients with B-cell lymphoma. J Clin Oncol (Meeting Abstracts). 2010;28(15):8095.
Hagenbeek A, Fayad L, Delwail V, Rossi JF, Jacobsen E, Kuliczkowski K et al., editors. Evaluation of ofatumumab, a novel human CD20 monoclonal antibody, as single agent therapy in rituximab-refractory follicular lymphoma. Blood. 2009;114(22):385–6.
Czuczman M, Viardot A, Hess G, Gadeberg O, Pedersen L, Gupta I, et al. Ofatumumab combined with CHOP in previously untreated patients with follicular lymphoma (FL). J Clin Oncol. 2010;28(15):8042.
Sharkey RM, Press OW, Goldenberg DM. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood. 2009;113(17):3891–5.
Beers SA, Chan CH, James S, French RR, Attfield KE, Brennan CM, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood. 2008;112(10):4170–7.
Salles G, Seymour JF, Offner F, López-Guillermo A, Belada D, Xerri L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377(9759):42–51.
Goldenberg DM, Rossi EA, Stein R, Cardillo TM, Czuczman MS, Hernandez-Ilizaliturri FJ, et al. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009;113(5):1062–70.
Negrea OG, Allen SL, Rai KR, Elstrom R, Abassi R, Farber CM et al., editors. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab for treatment of indolent B-cell malignancies. Blood. 2009;114(22):1446.
Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Wang Y, Chang C-H. Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res. 2008;68(20):8384–92.
Morschhauser F, Marlton P, Vitolo U, Linden O, Seymour J, Crump M et al., editors. Interim results of a phase I/II study of ocrelizumab, a new humanised anti-CD20 antibody in patients with relapsed/refractory follicular non-Hodgkin’s lymphoma. Blood. 2007;110(11):199A.
Maloney DG. Follicular NHL: from antibodies and vaccines to graft-versus-lymphoma effects. ASH Educ Program Book. 2007;2007(1):226–32.
Bello C, Sotomayor EM. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. ASH Educ Program Book. 2007;2007(1):233–42.
Friedberg JW, Vose JM, Kahl BS, Brunvand MW, Goy A, Kasamon YL et al., editors. A phase I study of PRO131921, a novel anti-CD20 monoclonal antibody in patients with relapsed/refractory CD20 (+) indolent NHL: correlation between clinical responses and AUC pharmacokinetics. Blood. 2009;114(22):3742.
Salles G, Morschhauser F, Lamy T, Milpied N, Thieblemont C, Tilly H et al., editors. Phase I study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ non-Hodgkin lymphoma (NHL). Blood. 2009;114(22):169.
Sehn LH, Assouline SE, Stewart DA, Mangel J, Pisa P, Kothari J et al., editors. A phase I study of GA101 (RO5072759) monotherapy followed by maintenance in patients with multiply relapsed/refractory CD20 (+) malignant disease. Blood. 2009;114(22):285.
Salles A, Morschhauser F, Thieblemont C, Solal-Celigny P, Lamy T, Tilly H, et al. Promising efficacy with the new anti-CD20 antibody GA101 in heavily pre-treated patients-first results from a phase II study in patients with relapsed/refractory indolent NHL (INHL). Haematologica. 2010;95 suppl 2:229.
Hayden-Ledbetter MS, Cerveny CG, Espling E, Brady WA, Grosmaire LS, Tan P, et al. CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res. 2009;15(8):2739–46.
Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem. 1993;268(10):7011–8.
Nitschke L, Carsetti R, Ocker B, Köhler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol. 1997;7(2):133–43.
Nakashima H, Hamaguchi Y, Watanabe R, Ishiura N, Kuwano Y, Okochi H, et al. CD22 expression mediates the regulatory functions of peritoneal B-1a cells during the remission phase of contact hypersensitivity reactions. J Immunol. 2010;184(9):4637–45.
Sato S, Tuscano JM, Inaoki M, Tedder TF, editors. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol. 1998;10(4):287–97.
Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T, et al. Epratuzumab, a humanized monoclonal antibody targeting CD22 characterization of in vitro properties. Clin Cancer Res. 2003;9(10):3982s–90.
Carnahan J, Stein R, Qu Z, Hess K, Cesano A, Hansen HJ, et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol. 2007;44(6):1331–41.
Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR, et al. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21(16):3051–9.
Leonard JP, Schuster SJ, Emmanouilides C, Couture F, Teoh N, Wegener WA, et al. Durable complete responses from therapy with combined epratuzumab and rituximab. Cancer. 2008;113(10):2714–23.
Strauss SJ, Morschhauser F, Rech J, Repp R, Solal-Celigny P, Zinzani PL, et al. Multicenter phase II trial of immunotherapy with the humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2006;24(24):3880–6.
Micallef IN, Kahl BS, Maurer MJ, Dogan A, Ansell SM, Colgan JP, et al. A pilot study of epratuzumab and rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated, diffuse large B‐cell lymphoma. Cancer. 2006;107(12):2826–32.
Stein R, Qu Z, Chen S, Rosario A, Shi V, Hayes M, et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin’s lymphoma. Clin Cancer Res. 2004;10(8):2868–78.
Rossi EA, Goldenberg DM, Cardillo TM, Stein R, Chang C-H. Hexavalent bispecific antibodies represent a new class of anticancer therapeutics: 1. Properties of anti-CD20/CD22 antibodies in lymphoma. Blood. 2009;113(24):6161–71.
Qu Z, Goldenberg DM, Cardillo TM, Shi V, Hansen HJ, Chang C-H. Bispecific anti-CD20/22 antibodies inhibit B-cell lymphoma proliferation by a unique mechanism of action. Blood. 2008;111(4):2211–9.
DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother. 2005;54(1):11–24.
DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.
DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10(24):8620–9.
DiJoseph JF, Dougher MM, Kalyandrug LB, Armellino DC, Boghaert ER, Hamann PR, et al. Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res. 2006;12(1):242–9.
Advani A, Coiffier B, Czuczman MS, Dreyling M, Foran J, Gine E, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010;28(12):2085–93.
Dang NH, Smith MR, Offner F, Verhoef G, Johnson P, Rohatiner AZ et al., editors. Anti-CD22 immunoconjugate inotuzumab ozogamicin (CMC-544)+ rituximab: clinical activity including survival in patients with recurrent/refractory follicular or’aggressive’lymphoma. 51st Annual meeting of the American Society of Hematology. 2009;114:242–43.
van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.
Hock BD, McKenzie JL, Patton NW, Drayson M, Taylor K, Wakeman C, et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer. 2006;106(10):2148–57.
Younes A. The dynamics of life and death of malignant lymphocytes. Curr Opin Oncol. 1999;11(5):364.
Oflazoglu E, Stone I, Brown L, Gordon K, van Rooijen N, Jonas M, et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer. 2008;100(1):113–7.
Kelley SK, Gelzleichter T, Xie D, Lee WP, Darbonne WC, Qureshi F, et al. Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti‐CD40 antibody (SGN‐40) in rodents and non‐human primates. Br J Pharmacol. 2006;148(8):1116–23.
Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica. 2010;95(5):845–8.
Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(26):4371–7.
Lugman M, Tong X, Niu X. CHIR-12.12, an antagonist anti-CD40 63. antibody, exhibits greater ADCC than rituximab against a variety of malignant B cells: evaluation of FcyRIIIa polymorphism and ADCC response [abstract no. 1472]. Blood. 2005;106:424a.
Tedder TF, Inaoki M, Sato S. The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity. 1997;6(2):107–18.
Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158(10):4662–9.
Hooijberg E, van den Berk PC, Sein JJ, Wijdenes J, Hart AA, de Boer RW, et al. Enhanced antitumor effects of CD20 over CD19 monoclonal antibodies in a nude mouse xenograft model. Cancer Res. 1995;55(4):840–6.
Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, et al. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 2008;68(19):8049–57.
Awan FT, Lapalombella R, Trotta R, Butchar JP, Yu B, Benson DM, et al. CD19 targeting of chronic lymphocytic leukemia with a novel Fc-domain–engineered monoclonal antibody. Blood. 2010;115(6):1204–13.
Reusch ULG, Hensel M, et al. Effect of tetravalent bispecific CD19xCD3 recombinant antibody construct and CD28 costimulation on lysis of malignant B cells from patients with chronic lymphocytic leukemia by autologous T cells. Int J Cancer. 2004;112:509–18.
Manzke OTH, Borchmann P, et al. Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation I. Clinical phase I evaluation. Int J Cancer. 2001;91(4):508–15.
Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell–engaging antibody. Science. 2008;321(5891):974–7.
Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM, et al. A recombinant bispecific single-chain antibody, CD19× CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098–103.
Al-Katib AM, Aboukameel A, Mohammad R, Bissery M-C, Zuany-Amorim C. Superior antitumor activity of SAR3419 to rituximab in xenograft models for non-Hodgkin’s lymphoma. Clin Cancer Res. 2009;15(12):4038–45.
Younes A, Kim S, Romaguera J. Copeland AR, de Castro Farial S, et al. Phase I multi-dose escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous(IV) infusion every 3 weeks to patients with relapsed/refractory B-cell non-Hodgkin’s lymphoma (NHL). J Clin Oncol. 2012;30(22):2776–82.
Classon BJ, Williams AF, Willis AC, Seed B, Stamenkovic I. The primary structure of the human leukocyte antigen CD37, a species homologue of the rat MRC OX-44 antigen. J Exp Med. 1989;169(4):1497–502.
Schwartz-Albiez R, Dörken B, Hofmann W, Moldenhauer G. The B cell-associated CD37 antigen (gp40-52). Structure and subcellular expression of an extensively glycosylated glycoprotein. J Immunol. 1988;140(3):905–14.
Smeland E, Funderud S, Ruud E, Blomhoff H, Godal T. Characterization of two murine monoclonal antibodies reactive with human B cells. Scand J Immunol. 1985;21(3):205–14.
Nuckel H, Frey U, Roth A, et al. Alemtuzumab induces enhanced apoptosis in vitro in B-cells from patients with chronic lymphocytic leukemia by antibody-dependent cellular cytotoxicity. Eur J Pharmacol. 2005;514(2–3):217–24.
Gallamini A, Zaja F, Patti C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL. Blood. 2007;7(110):2316–23.
Czajczynska AGA, Repp R, Humpe A, Schub N, Raff T, Nickelsen M, Schrauder A, Schrappe M, Kneba M, Gramatzki M. Allogeneic stem cell transplantation with BEAM and alemtuzumab conditioning immediately after remission induction has curative potential in advanced T-cell non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2013;19(11):1632–7.
Dakappagari N, Ho SN, Gascoyne RD, Ranuio J, Weng AP, Tangri S. CD80 (B7. 1) is expressed on both malignant B cells and nonmalignant stromal cells in non‐Hodgkin lymphoma. Cytom B Clin Cytom. 2012;82(2):112–9.
Schultze J, Nadler L, Gribben J. B7-mediated costimulation and the immune response. Blood Rev. 1996;10(2):111–27.
Younes A, Hariharan K, Allen RS, Leigh BR. Initial trials of anti-CD80 monoclonal antibody (Galiximab) therapy for patients with relapsed or refractory follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2003;3(4):257–9.
Bhat S, Czuczman MS. Galiximab: a review. Expert Opin Biol Ther. 2010;10(3):451–8.
Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol. 2005;23(19):4390–8.
Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang C-H, Burton J, et al. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin Cancer Res. 2007;13(18):5556s–63.
Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, et al. Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood. 2006;107(12):4807–16.
Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, et al. MIF signal transduction initiated by binding to CD74. J Exp Med. 2003;197(11):1467–76.
Sapra P, Stein R, Pickett J, Qu Z, Govindan SV, Cardillo TM, et al. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin Cancer Res. 2005;11(14):5257–64.
Chang C-H, Sapra P, Vanama SS, Hansen HJ, Horak ID, Goldenberg DM. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood. 2005;106(13):4308–14.
Gingrich RD, Dahle CE, Hoskins KF, Senneff M. Identification and characterization of a new surface membrane antigen found predominantly on malignant B lymphocytes. Blood. 1990;75(12):2375–87.
Stockmeyer B, Schiller M, Repp R, Lorenz HM, Kalden JR, Gramatzki M, et al. Enhanced killing of B lymphoma cells by granulocyte colony‐stimulating factor‐primed effector cells and Hu1D10–a humanized human leucocyte antigen DR antibody. Br J Haematol. 2002;118(4):959–67.
Shi JD, Bullock C, Hall WC, Wescott V, Wang H, Levitt DJ, et al. In vivo pharmacodynamic effects of Hu1D10 (remitogen), a humanized antibody reactive against a polymorphic determinant of HLA-DR expressed on B cells. Leuk Lymphoma. 2002;43(6):1303–12.
Tay K, Dunleavy K, Wilson WH. Targeting HLA-DR. Leuk Lymphoma. 2009;50(12):1911–3.
Dunleavy K, White T, Grant N, Shovlin M, Stetler-Stevenson M, Pittaluga S et al., editors. Phase 1 study of combination rituximab with apolizumab in relapsed/refractory B-cell lymphoma and chronic lymphocytic leukemia. J Clin Oncol (Meeting Abstracts). 2005;23(Suppl 16):1607.
Gupta P, Goldenberg DM, Rossi EA, Chang C-H. Multiple signaling pathways induced by hexavalent, monospecific, anti-CD20 and hexavalent, bispecific, anti-CD20/CD22 humanized antibodies correlate with enhanced toxicity to B-cell lymphomas and leukemias. Blood. 2010;116(17):3258–67.
Stein R, Qu Z, Chen S, Solis D, Hansen HJ, Goldenberg DM. Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood. 2006;108(8):2736–44.
Stein R, Gupta P, Chen X, Cardillo TM, Furman RR, Chen S, et al. Therapy of B-cell malignancies by anti–HLA-DR humanized monoclonal antibody, IMMU-114, is mediated through hyperactivation of ERK and JNK MAP kinase signaling pathways. Blood. 2010;115(25):5180–90.
Liu C, DeNardo G, Tobin E, DeNardo S. Antilymphoma effects of anti-HLA-DR and CD20 monoclonal antibodies (Lym-1 and Rituximab) on human lymphoma cells. Cancer Biother Radiopharm. 2004;19(5):545–61.
Hu E, Epstein AL, Naeve GS, Gill I, Martin S, Sherrod A, et al. A phase 1a clinical trial of LYM‐1 monoclonal antibody serotherapy in patients with refractory b cell malignancies. Hematol Oncol. 1989;7(2):155–66.
DeNardo GL, O’Donnell RT, Rose LM, Mirick GR, Kroger LA, DeNardo SJ. Milestones in the development of Lym-1 therapy. Hybridoma. 1999;18(1):1–11.
O’Donnell RT, Shen S, Denardo SJ, Wun T, Kukis DL, Goldstein DS, et al. A phase I study of 90Y-2IT-BAD-Lym-1 in patients with non-Hodgkin’s lymphoma. Anticancer Res. 1999;20(5C):3647–55.
O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, et al. A clinical trial of radioimmunotherapy with 67Cu-21T.-BAT-Lym-1for non-Hodgkin’s lymphoma. J Nucl Med. 1999;40:2014–20.
DeNardo GL, Tobin E, Chan K, Bradt BM, DeNardo SJ. Direct antilymphoma effects on human lymphoma cells of monotherapy and combination therapy with CD20 and HLA-DR antibodies and 90Y-labeled HLA-DR antibodies. Clin Cancer Res. 2005;11(19):7075s–9.
DeNardo GL, Hok S, Natarajan A, Cosman M, DeNardo SJ, Lightstone FC, et al. Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol. 2007;31(4):729–40.
DeNardo GL, Natarajan A, Hok S, Perkins J, Cosman M, DeNardo SJ, et al. Pharmacokinetic characterization in xenografted mice of a series of first-generation mimics for HLA-DR antibody, Lym-1, as carrier molecules to image and treat lymphoma. J Nucl Med. 2007;48(8):1338–47.
West J, Perkins J, Hok S, Balhorn R, Lightstone FC, Cosman M, et al. Direct antilymphoma activity of novel, first-generation “antibody mimics” that bind HLA-DR10-positive non-Hodgkin’s lymphoma cells. Cancer Biother Radiopharm. 2006;21(6):645–54.
Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111(12):5637–45.
Xu C, de Vries R, Visser L, Diepstra A, Gadola SD, Poppema S, et al. Expression of CD1d and presence of invariant NKT cells in classical Hodgkin lymphoma. Am J Hematol. 2010;85(7):539–41.
Song L, Ashgharzadeh S, Salo J, Engell K, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC, Metelitsa LS. Valpha24-invariant NKT cells mediate anti-tumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119:1524–36.
Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.
Metelitsa LS. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol. 2011;140(2):119–29.
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44–9.
Sulica A, Morel R, Metes D, Herberman R. Ig-binding receptors on human NK cells as effector and regulatory surface molecules. Int Rev Immunol. 2001;20(3–4):371–414.
Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol. 2008;27(3):93–110.
Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet. 2000;356(9244):1795–9.
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7.
Yang Q, Hokland ME, Bryant JL, Zhang Y, Nannmark U, Watkins SC, et al. Tumor‐localization by adoptively transferred, interleukin‐2‐activated NK cells leads to destruction of well‐established lung metastases. Int J Cancer. 2003;105(4):512–9.
Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK. Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol. 2008;181(5):3449–55.
Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L. Natural killer cell–directed therapies: moving from unexpected results to successful strategies. Nat Immunol. 2008;9(5):486–94.
Deng X, Terunuma H, Nieda M, Xiao W, Nicol A. Synergistic cytotoxicity of ex vivo expanded natural killer cells in combination with monoclonal antibody drugs against cancer cells. Int Immunopharmacol. 2012;14(4):593–605.
Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7.
Harada H, Saijo K, Watanabe S, Tsuboi K, Nose T, Ishiwata I, et al. Selective expansion of human natural killer cells from peripheral blood mononuclear cells by the cell line, HFWT. Cancer Sci. 2002;93(3):313–9.
Sutlu T, Stellan B, Gilljam M, Quezada HC, Nahi H, Gahrton G, et al. Clinical-grade, large-scale, feeder-free expansion of highly active human natural killer cells for adoptive immunotherapy using an automated bioreactor. Cytotherapy. 2010;12(8):1044–55.
Luhm J, Brand J-M, Koritke P, Höppner M, Kirchner H, Frohn C. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res. 2002;11(4):651–7.
Berg M, Lundqvist A, McCoy Jr P, Samsel L, Fan Y, Tawab A, et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):341–55.
Pievani A, Belussi C, Klein C, Rambaldi A, Golay J, Introna M. Enhanced killing of human B-cell lymphoma targets by combined use of cytokine-induced killer cell (CIK) cultures and anti-CD20 antibodies. Blood. 2011;117(2):510–8.
Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10(17):5650–5.
Beano A, Signorino E, Evangelista A, Brusa D, Mistrangelo M, Polimeni MA, et al. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients. J Transl Med. 2008;6(1):25.
Kute TE, Savage L, Stehle Jr JR, Kim-Shapiro JW, Blanks MJ, Wood J, et al. Breast tumor cells isolated from in vitro resistance to trastuzumab remain sensitive to trastuzumab anti-tumor effects in vivo and to ADCC killing. Cancer Immunol Immunother. 2009;58(11):1887–96.
Maréchal R, De Schutter J, Nagy N, Demetter P, Lemmers A, Devière J, et al. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients. BMC Cancer. 2010;10(1):340.
Siders WM, Shields J, Garron C, Hu Y, Boutin P, Shankara S, et al. Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leuk Lymphoma. 2010;51(7):1293–304.
Baron S, Tyring SK, Fleischmann Jr WR, Coppenhaver DH, Niesel DW, Klimpel GR, et al. The interferons. JAMA. 1991;266(10):1375–83.
McLaughlin P. The role of interferon in the therapy of low grade lymphoma. Leuk Lymphoma. 1993;10(S1):17–20.
Janssen JTP, Ludwig H, Scheithauer W, De Pauw B, Keyser A, Van Tol R, et al. Phase I study of recombinant human interferon alpha-2C in patients with chemotherapy-refractory malignancies. Oncology. 1985;42 Suppl 1:3–6.
Leavitt R, Ratanatharathorn V, Ozer H, Ultmann J, Portlock C, Myers J et al., editors. Alfa-2b interferon in the treatment of Hodgkin’s disease and non-Hodgkin’s lymphoma. Semin Oncol. 1987;14(2 Suppl 2):18.
Davis TA, Maloney DG, Grillo-López AJ, White CA, Williams ME, Weiner GJ, et al. Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma with rituximab and interferon-α-2a. Clin Cancer Res. 2000;6(7):2644–52.
Salles G, Mounier N, de Guibert S, Morschhauser F, Doyen C, Rossi J-F, et al. Rituximab combined with chemotherapy and interferon in follicular lymphoma patients: results of the GELA-GOELAMS FL2000 study. Blood. 2008;112(13):4824–31.
Rohatiner A, Gregory W, Peterson B, Borden E, Solal-Celigny P, Hagenbeek A, et al. Meta-analysis to evaluate the role of interferon in follicular lymphoma. J Clin Oncol. 2005;23(10):2215–23.
Kreitman RJ, Pastan I. Recombinant single-chain immunotoxins against T and B cell leukemias. Leuk Lymphoma. 1994;13(1–2):1.
Yamauchi T, Matsuda Y, Takai M, Tasaki T, Tai K, Hosono N, et al. Early relapse is associated with high serum soluble onterleukin-2 receptor after the sixth cycle of R-CHOP chemotherapy in patients with advanced diffuse large B-cell lymphoma. Anticancer Res. 2012;32(11):5051–7.
Kitagawa J-i, Hara T, Tsurumi H, Goto N, Kanemura N, Yoshikawa T, et al. Serum-soluble interleukin-2 receptor (sIL-2R) is an extremely strong prognostic factor for patients with peripheral T-cell lymphoma, unspecified (PTCL-U). J Cancer Res Clin Oncol. 2009;135(1):53–9.
Yoshizato T, Nannya Y, Imai Y, Ichikawa M, Kurokawa M. Clinical significance of serum-soluble interleukin-2 receptor in patients with follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2013;13(4):410–6.
Grille S, Brugnini A, Nese M, Corley E, Falkenberg FW, Lens D, et al. A B-cell lymphoma vaccine using a depot formulation of interleukin-2 induces potent antitumor immunity despite increased numbers of intratumoral regulatory T cells. Cancer Immunol Immunother. 2010;59(4):519–27.
Slivnick DJ, Ellis TM, Nawrocki JF, Fisher RI. The impact of Hodgkin’s disease on the immune system. Semin Oncol. 1990;17(6):673–82.
Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11(2):255–60.
Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer. 2005;92(8):1430–41.
Luster TA, Carrell JA, McCormick K, Sun D, Humphreys R. Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib. Mol Cancer Ther. 2009;8(2):292–302.
Georgakis GV, Li Y, Humphreys R, Andreeff M, O’Brien S, Younes M, et al. Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL‐R1 and TRAIL‐R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin‐and bortezomib‐induced cell death. Br J Haematol. 2005;130(4):501–10.
Maddipatla S, Hernandez-Ilizaliturri FJ, Knight J, Czuczman MS. Augmented antitumor activity against B-cell lymphoma by a combination of monoclonal antibodies targeting TRAIL-R1 and CD20. Clin Cancer Res. 2007;13(15):4556–64.
Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K, et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor–related apoptosis-inducing ligand receptor-1. J Clin Oncol. 2007;25(11):1390–6.
Wakelee H, Patnaik A, Sikic B, Mita M, Fox N, Miceli R, et al. Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol. 2010;21(2):376–81.
Kaplan-Lefko PJ, Graves JD, Zoog SJ, Pan Y, Wall J, Branstetter DG, et al. Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types. Cancer Biol Ther. 2010;9(8):618–31.
Yee L, Fanale M, Dimick K, Calvert S, Robins C, Ing J, et al. A phase IB safety and pharmacokinetic (PK) study of recombinant human Apo2L/TRAIL in combination with rituximab in patients with low-grade non-Hodgkin lymphoma. J Clin Oncol. 2007;25(18 Suppl):8078.
Daniel D, Yang B, Lawrence DA, Totpal K, Balter I, Lee WP, et al. Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood. 2007;110(12):4037–46.
Lundqvist A, Berg M, Smith A, Childs RW. Bortezomib treatment to potentiate the anti-tumor immunity of ex-vivo expanded adoptively infused autologous natural killer cells. J Cancer. 2011;2:383.
Schiffer S, Hansen H, Hehmann-Titt G, Huhn M, Fischer R, Barth S, et al. Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model. Blood Cancer J. 2013;3(3):e106.
Maunch PM, Armitage JO, Diehl V, Hoppe RT, Weiss LM, editors. Hodgkin’s disease. Philadelphia: Lippincott Williams & Wilkins; 1999.
DeMonaco NA, Wu M, Osborn J, Evans T, Foon KA, Swerdlow SH, et al. Phase II trial of abbreviated CHOP-rituximab followed by 90Y ibritumomab tiuxetan (Zevalin) and rituximab in patients with previously-untreated follicular non-Hodgkin lymphoma (NHL). Blood. 2005;106(11):2449.
Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441–9.
Morschhauser F, Radford J, Van Hoof A, Vitolo U, Soubeyran P, Tilly H, et al. Phase III trial of consolidation therapy with yttrium-90–ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26(32):5156–64.
DeNardo GL, DeNardo SJ, Goldstein DS, Kroger LA, Lamborn KR, Levy NB, et al. Maximum-tolerated dose, toxicity, and efficacy of (131) I-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin’s lymphoma. J Clin Oncol. 1998;16(10):3246–56.
Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90–labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.
Horning SJ, Younes A, Jain V, Kroll S, Lucas J, Podoloff D, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol. 2005;23(4):712–9.
Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(15):3262–9.
Vose JM, Wahl RL, Saleh M, Rohatiner AZ, Knox SJ, Radford JA, et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2000;18(6):1316–23.
Reff ME, Carner K, Chambers K, Chinn P, Leonard J, Raab R, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.
Gopal AK, Press OW, Wilbur SM, Maloney DG, Pagel JM. Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood. 2008;112(3):830–5.
Wada N, Kohara M, Ogawa H, Sugiyama H, Fukuhara S, Tatsumi Y, et al. Change of CD20 expression in diffuse large B-cell lymphoma treated with rituximab, an anti-CD20 monoclonal antibody: a study of the Osaka Lymphoma Study Group. Case Rep Oncol. 2009;2(3):194–202.
Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, et al. Escape mechanisms from antibody therapy to lymphoma cells: downregulation of< i >CD20</i >mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem Biophys Res Commun. 2009;390(1):48–53.
Gopal AK, Rajendran JG, Gooley TA, Pagel JM, Fisher DR, Petersdorf SH, et al. High-dose [131I] tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults ≥ 60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol. 2007;25(11):1396–402.
Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, LeBlanc M, et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol. 2006;24(25):4143–9.
Gordon LI, Witzig TE, Wiseman GA, Flinn IW, Spies SS, Silverman DH et al., editors. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin’s lymphoma. Semin Oncol. 2002;29(1):87–92.
Witzig TE, Molina A, Gordon LI, Emmanouilides C, Schilder RJ, Flinn IW, et al. Long‐term responses in patients with recurring or refractory B‐cell non‐Hodgkin lymphoma treated with yttrium 90 ibritumomab tiuxetan. Cancer. 2007;109(9):1804–10.
Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med. 1993;329(17):1219–24.
Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR, et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol. 1992;10(11):1696–711.
Eary JF, Press OW, Badger CC, Durack LD, Richter KY, Addison SJ, et al. Imaging and treatment of B-cell lymphoma. J Nucl Med Off Publ Soc Nucl Med. 1990;31(8):1257.
Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother. 1997;44(3):179–88.
Lub‐de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, et al. Preclinical characterisation of 111In‐DTPA‐trastuzumab. Br J Pharmacol. 2004;143(1):99–106.
Goldenberg DM, Horowitz J, Sharkey R, Hall T, Murthy S, Goldenberg H, et al. Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol. 1991;9(4):548–64.
Ghetie MA, Richardson J, Tucker T, Jones D, Uhr JW, Vitetta ES. Disseminated or localized growth of a human B‐cell tumor (Daudi) in scid mice. Int J Cancer. 1990;45(3):481–5.
Repetto-Llamazares AH, Larsen RH, Mollatt C, Lassmann M, Dahle J. Biodistribution and dosimetry of 177Lu-tetulomab, a new radioimmunoconjugate for treatment of non-Hodgkin lymphoma. Curr Radiopharm. 2013;6(1):20.
Wang H, Wei H, Zhang R, Hou S, Li B, Qian W, et al. Genetically targeted T cells eradicate established breast cancer in syngeneic mice. Clin Cancer Res. 2009;15(3):943–50.
Teng MW, Kershaw MH, Moeller M, Smyth MJ, Darcy PK. Immunotherapy of cancer using systemically delivered gene-modified human T lymphocytes. Hum Gene Ther. 2004;15(7):699–708.
Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM, et al. Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood. 2002;100(9):3155–63.
Hombach A, Wieczarkowiecz A, Marquardt T, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001;167:6123–31.
Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther. 2004;10(1):5–18.
Jiang L, Yu K, Du J, Ni W, Han Y, Gao S, et al. Inhibition of p38 MAPK activity in B-NHL Raji cells by treatment with engineered CD20-specific T cells. Oncol Lett. 2011;2(4):753–8.
Jensen M, Cooper L, Wu A, Forman S, Raubitschek A. Engineered CD20-specific primary human cytotoxic T lymphocytes for targeting B-cell malignancy. Cytotherapy. 2003;5(2):131–8.
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci. 1993;90(2):720–4.
Yu K, Hu Y, Tan Y, et al. Immunotherapy of lymphomas with T cells modified by anti-CD20 scFv/CD28/CD3zeta recombinant gene. Leuk Lymphoma. 2008;49:1368–73.
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2010;19(3):620–6.
Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70.
Rosenberg SA. Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor–transduced autologous T cells. Mol Ther. 2010;18(10):1744.
Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12(5):933–41.
Ngo MC, Rooney CM, Howard JM, Heslop HE. Ex vivo gene transfer for improved adoptive immunotherapy of cancer. Hum Mol Genet. 2011;20(R1):R93–9.
Westwood JA, Kershaw MH. Genetic redirection of T cells for cancer therapy. J Leukoc Biol. 2010;87(5):791–803.
Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392–402.
De Angelis B, Dotti G, Quintarelli C, Huye LE, Zhang L, Zhang M, et al. Generation of Epstein-Barr virus–specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood. 2009;114(23):4784–91.
Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.
Moritz D, Groner B. A spacer region between the single chain antibody-and the CD3 zeta-chain domain of chimeric T cell receptor components is required for efficient ligand binding and signaling activity. Gene Ther. 1995;2(8):539–46.
Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23.
Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy. Cancer. 2007;109(2):170–9.
Weijtens ME, Willemsen RA, Valerio D, Stam K, Bolhuis R. Single chain Ig/gamma gene-redirected human T lymphocytes produce cytokines, specifically lyse tumor cells, and recycle lytic capacity. J Immunol. 1996;157(2):836–43.
Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70.
Geiger TL, Nguyen P, Leitenberg D, Flavell RA. Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes. Blood. 2001;98(8):2364–71.
Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13(18):5426–35.
Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.
Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116(7):1035–44.
Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87.
Heslop HE. Safer cars. Mol Ther. 2010;18(4):661.
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.
Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42(4):501–10.
Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann H-G, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother. 2008;57(3):411–23.
Altvater B, Landmeier S, Pscherer S, Temme J, Schweer K, Kailayangiri S, et al. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res. 2009;15(15):4857–66.
Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy. 2008;10(3):265–74.
Pizzoferrato E. B7‐2 expression above a threshold elicits anti‐tumor immunity as effective as interleukin‐12 and prolongs survival in murine B‐cell lymphoma. Int J Cancer. 2004;110(1):61–9.
Moreno M, Kramer MG, Yim L, Chabalgoity JA. Salmonella as live trojan horse for vaccine development and cancer gene therapy. Current Gene Ther. 2010;10(1):56–76.
Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142–52.
Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother. 2003;26(2):179.
Spaner D, Shi Y, White D, Shaha S, He L, Masellis A, et al. A phase I/II trial of TLR-7 agonist immunotherapy in chronic lymphocytic leukemia. Leukemia. 2009;24(1):222–6.
Spaner D, Masellis A. Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia. 2006;21(1):53–60.
Månsson A, Adner M, Höckerfelt U, Cardell LO. A distinct Toll‐like receptor repertoire in human tonsillar B cells, directly activated by Pam3CSK4, R‐837 and CpG‐2006 stimulation. Immunology. 2006;118(4):539–48.
Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4):621–5.
Delbridge LM, O’Riordan MX. Innate recognition of intracellular bacteria. Curr Opin Immunol. 2007;19(1):10–6.
Andersen MH, Schrama D, Thor Straten P, Becker JC. Cytotoxic T cells. J Invest Dermatol. 2006;126(1):32–41.
Houghton AM. The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle. 2010;9(9):1732–7.
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β:“N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.
Pohl C, Renner C, Schwonzen M, Schobert I, Liebenberg V, Wolf J, et al. CD30‐specific AB1‐AB2‐AB3 internal image antibody network: Potential use as anti‐idiotype vaccine against Hodgkin’s lymphoma. Int J Cancer. 1993;54(3):418–25.
Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech’s challenge. Biotechnol Adv. 2012;30(1):372–83.
Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. BioMed Res Int. 2010;2010:174378.
Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer. 2008;8(2):108–20.
Iurescia S, Fioretti D, Pierimarchi P, Signori E, Zonfrillo M, Tonon G, et al. Genetic immunization with CDR3-based fusion vaccine confers protection and long-term tumor-free survival in a mouse model of lymphoma. J Biomed Biotechnol. 2010;2010:316069.
Rinaldi M, Fioretti D, Iurescia S, Signori E, Pierimarchi P, Seripa D, et al. Anti-tumor immunity induced by CDR3-based DNA vaccination in a murine B-cell lymphoma model. Biochem Biophys Res Commun. 2008;370(2):279–84.
Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat Immunol. 2004;5(11):1143–8.
Wan YY, Flavell RA. How diverse—CD4 effector T cells and their functions. J Mol Cell Biol. 2009;1(1):20–36.
Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4+ T cells in the antitumor immune response. J Exp Med. 1998;188(12):2357–68.
Murphy KM, Travers P, Walport M. Janeway’s Immunobiology. 7th ed. New York: Garland Science Publishing; 2007.
Kim Y, Sette A, Peters B. Applications for T-cell epitope queries and tools in the Immune Epitope Database and Analysis Resource. J Immunol Methods. 2011;374(1):62–9.
Rosa DS, Ribeiro SP, Cunha-Neto E. CD4+ T cell epitope discovery and rational vaccine design. Arch Immunol Ther Exp. 2010;58(2):121–30.
Houot R, Levy R. Vaccines for lymphomas: idiotype vaccines and beyond. Blood Rev. 2009;23(3):137–42.
Rinaldi M, Ria F, Parrella P, Signori E, Serra A, Ciafrè SA, et al. Antibodies elicited by naked DNA vaccination against the complementary-determining region 3 hypervariable region of immunoglobulin heavy chain idiotypic determinants of B-lymphoproliferative disorders specifically react with patients’ tumor cells. Cancer Res. 2001;61(4):1555–62.
Hansson L, Rabbani H, Fagerberg J, Österborg A, Mellstedt H. T-cell epitopes within the complementarity-determining and framework regions of the tumor-derived immunoglobulin heavy chain in multiple myeloma. Blood. 2003;101(12):4930–6.
Harig S, Witzens M, Krackhardt AM, Trojan A, Barrett P, Broderick R, et al. Induction of cytotoxic T-cell responses against immunoglobulin V region–derived peptides modified at human leukocyte antigen–A2 binding residues. Blood. 2001;98(10):2999–3005.
Terasawa H, Tsang K-Y, Gulley J, Arlen P, Schlom J. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clin Cancer Res. 2002;8(1):41–53.
Borbulevych OY, Baxter TK, Yu Z, Restifo NP, Baker BM. Increased immunogenicity of an anchor-modified tumor-associated antigen is due to the enhanced stability of the peptide/MHC complex: implications for vaccine design. J Immunol. 2005;174(8):4812–20.
Williams BB, Wall M, Miao RY, Williams B, Bertoncello I, Kershaw MH, et al. Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunol Immunother. 2008;57(11):1635–45.
Link Snyder H, Bačík I, Yewdell JW, Behrens TW, Bennink JR. Promiscuous liberation of MHC‐class I‐binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur J Immunol. 1998;28(4):1339–46.
Signori E, Iurescia S, Massi E, Fioretti D, Chiarella P, De Robertis M, et al. DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother. 2010;59(10):1583–91.
Wenger C, Stern M, Herrmann R, Rochlitz C, Pless M. Rituximab plus gemcitabine: a therapeutic option for elderly or frail patients with aggressive non Hodgkin’s lymphoma? Leuk Lymphoma. 2005;46(1):71–5.
El Gnaoui T, Dupuis J, Belhadj K, Jais J, Rahmouni A, Copie-Bergman C, et al. Rituximab, gemcitabine and oxaliplatin: an effective salvage regimen for patients with relapsed or refractory B-cell lymphoma not candidates for high-dose therapy. Ann Oncol. 2007;18(8):1363–8.
Corazzelli G, Russo F, Capobianco G, Marcacci G, Della Cioppa P, Pinto A. Gemcitabine, ifosfamide, oxaliplatin and rituximab (R-GIFOX), a new effective cytoreductive/mobilizing salvage regimen for relapsed and refractory aggressive non-Hodgkin’s lymphoma: results of a pilot study. Ann Oncol. 2006;17 suppl 4:iv18–24.
Smith S, Toor A, Klein J, Rodriguez T, Stiff P. The combination of gallium nitrate, rituximab and dexamethasone is effective and safe as a salvage regimen for diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(June20Suppl):17510.
Leonard JP, Coleman M, Ketas J, Ashe M, Fiore JM, Furman RR, et al. Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(22):5044–51.
Niitsu N, Kohuri M, Higashihara M, Bessho M. Phase II study of the CPT‐11, mitoxantrone and dexamethasone regimen in combination with rituximab in elderly patients with relapsed diffuse large B‐cell lymphoma. Cancer Sci. 2006;97(9):933–7.
Younes A, McLaughlin P, Romaguera J, Hagemeister F, Pro B, Dang N et al., editors. Taxol plus topotecan plus rituximab (TTR) with G-CSF support: an effective salvage program for the treatment of patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma (NHL) who failed CHOP-like and platinum-based therapy. Blood. 2003;102(11):142A–3A.
Canales M, Sanjurjo M, García-Vela J, De Paz R, Cobo T, de la Guia A et al., editors. Paclitaxel and topotecan in combination with rituximab as effective second-line salvage regimen in resistant aggressive non-Hodgkin’s lymphoma. Ann Oncol. 2005;16:181.
Woehrer S, Hejna M, Skrabs C, Drach J, Zielinski CC, Jaeger U, et al. Rituximab, Ara-C, dexamethasone and oxaliplatin is safe and active in heavily pretreated patients with diffuse large B-cell lymphoma. Oncology. 2006;69(6):499–502.
Xia Z-G, Xu Z-Z, Zhao W-L, Zhao S-Q, Ding F, Chen Y, et al. The prognostic value of immunohistochemical subtyping in Chinese patients with de novo diffuse large B-cell lymphoma undergoing CHOP or R-CHOP treatment. Ann Hematol. 2010;89(2):171–7.
Saito B, Shiozawa E, Usui T, Nakashima H, Maeda T, Hattori N, et al. Rituximab with chemotherapy improves survival of non-germinal center type untreated diffuse large B-cell lymphoma. Leukemia. 2007;21(12):2563–6.
Fu K, Weisenburger DD, Choi WW, Perry KD, Smith LM, Shi X, et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell–like and non–germinal center B-cell–like subtypes of diffuse large B-cell lymphoma. J Clin Oncol. 2008;26(28):4587–94.
Czuczman MS, Fayad L, Delwail V, Cartron G, Jacobsen E, Kuliczkowski K, et al. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704.
Czuczman MS, Hess G, Gadeberg OV, Pedersen LM, Goldstein N, Gupta I, et al. Chemoimmunotherapy with ofatumumab in combination with CHOP in previously untreated follicular lymphoma. Br J Haematol. 2012;157(4):438–45.
Carlile D, Meneses-Lorente G, Wassner-Fritsch E, Hourcade-Potelleret F, Wenger MK, Cartron G et al., editors. Pharmacokinetics of obinutuzumab (GA101) in patients with CD20+ relapsed/refractory malignant disease receiving concomitant chemotherapy (Phase Ib Study BO21000). Blood. 2011;Abs 374.
Friedberg JW VJ, Kahl BS, Brunvand M, Goy A, Kasamon Y, Brington B, Li J, Ho W, Cheson BD. A Phase I Study of PRO131921, a novel anti-CD20 monoclonal antibody in patients with relapsed/refractory CD20+ Indolent NHL: correlation between clinical responses and AUC pharmacokinetics. ASH annual meeting abstract. 2009(114):3472.
Wayne JL, Ganjoo KN, Pohlman BL, De Vos S, Flinn IW, Dang NH et al., editors. Efficacy of ocaratuzumab (AME-133v) in relapsed follicular lymphoma patients refractory to prior rituximab. J Clin Oncol. 2012;30(15):2318.
Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, et al. Immune epitope database analysis resource. 2012(40):525–30.
Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, et al. The immune epitope database 2.0. 2010;38:854–62.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ebadi, M., Reddy, N.M., Rezaei, N. (2015). Immunopathology and Immunotherapy of Non-Hodgkin Lymphoma. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46410-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-46410-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46409-0
Online ISBN: 978-3-662-46410-6
eBook Packages: MedicineMedicine (R0)