Skip to main content

Zusammenfassung

Die Multiphotonentomographie (MPT) hat in den letzten Jahren eine zunehmende Bedeutung als nichtinvasive Untersuchungsmethode in der Dermatologie erfahren. Durch die MPT wird eine „optische Biopsie“ bis zu einer Tiefe von 200 μm ermöglicht, die zelluläre und extrazelluläre Strukturen mit subzellulärer Auflösung darstellt. Mit der MPT ist eine Charakterisierung der Zellmorphologie und des dermalen Fasernetzwerkes ohne zusätzliche Fluoreszenzmarkierung der Gewebe in vivo möglich. Das Verfahren wird gegenwärtig noch vor allem in der biomedizinischen Forschung, zunehmend aber auch in der klinischen Diagnostik eingesetzt. Dabei ist die morphologische Beurteilung von Tumoren der Haut (Basalzellkarzinom, Plattenepithelkarzinom, malignes Melanom), bei entzündlichen und allergischen Dermatosen sowie beim Nachweis transkutaner Transportprozesse möglich. Darüber hinaus können funktionelle und metabolische Prozesse von Zellen, Zellverbänden und Geweben untersucht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Balu M, Kelly KM, Zachary CB, Harris RM, Krasieva TB, König K, Durkin AJ, Tromberg BJ (2014) Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res 74(10):2688–2697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19):8766–8773

    Article  CAS  PubMed  Google Scholar 

  • Bugiel I, König K, Wabnitz H (1989) Investigation of cells by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sci 3:1–7

    Google Scholar 

  • Chen J, Guo Z, Wang HB et al (2013) Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials 34:571e581

    Google Scholar 

  • Chen J, Zhuo S, Chen G, Yan J, Yang H, Liu N, Zheng L, Jiang X, Xie S (2011) Establishing diagnostic features for identifying the mucosa and submucosa of normal and cancerous gastric tissues by multiphoton microscopy. Gastrointest Endosc 73(4):802–807

    Article  PubMed  Google Scholar 

  • Cicchi R, Crisci A, Cosci A, Nesi G, Kapsokalyvas D, Giancane S, Carini M, Pavone FS (2010) Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. Opt Express 18(4):3840–3849

    Article  CAS  PubMed  Google Scholar 

  • Conklin MW, Provenzano PP, Eliceiri KW, Sullivan R, Keely PJ (2009) Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem. Biophys 53(3):145–157

    CAS  Google Scholar 

  • Darvin ME, König K, Kellner-Hoefer M et al (2012) Safety assessment by multiphoton fluorescence/second harmonic generation/hyper-rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products. Skin Pharmacol Physiol 25:219–226

    Article  CAS  PubMed  Google Scholar 

  • Deka G, Wu WW, Kao FJ (2013) In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging. J Biomed Opt 18(6):061222

    Article  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Diaspro A, Bianchini P, Vicidomini G et al (2006) Multi-photon excitations microscopy. Biomed Eng Online 5:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Dimitrow E, Riemann I, Ehlers A et al (2009a) Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol 18:509–515

    Article  PubMed  Google Scholar 

  • Dimitrow E, Ziemer M, Koehler MJ et al (2009b) Sensitivity and specificity of multiphotonlasertomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol 129:1752–1758

    Article  CAS  PubMed  Google Scholar 

  • El Madani HA, Tancréde-Bohin E, Bensussan A, Colonna A, Dupuy A, Bagot M, Pena AM (2012) In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation. J Biomed Opt 17(2):026009

    Article  PubMed  Google Scholar 

  • Fischer F, Volkmer B, Puschmann S et al (2008) Assessing the risk of skin damage due to femtosecond laser irradiation. J Biophotonics 1:470–477

    Article  PubMed  Google Scholar 

  • Friedl P, Wolf K, von Adrian UH, Harms G (2007) Biological second and third harmonic generation microscopy. In Curr Protoc Cell Biol Chapter 4

    Google Scholar 

  • Gannaway JN, Sheppard CJR (1978) Second-harmonic imaging in the scanning optical microscope. Opt Quant Electron 10(5):318–322

    Article  Google Scholar 

  • Gerger A, Hofmann-Wellenhof R, Samonigg H, Smolle J (2009) In vivo confocal laser scanning microscopy in the diagnosis of melanocytic skin tumours. Br J Dermatol 160(3):475–481

    Article  CAS  PubMed  Google Scholar 

  • Goeppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9:273–294

    Article  Google Scholar 

  • Grewal BS, Naik A, Irwin WJ, Gooris G, de Grauw CJ, Gerritsen HG, Bouwstra JA (2000) Transdermal macromolecular delivery: Real-time visualization of iontophoretic and chemically enhanced transport using two-photon excitation microscopy. Pharm Res 17:788–795

    Article  CAS  PubMed  Google Scholar 

  • Gryczynski I, Malak H, Lakowicz JR, Cheung HC, Robinson J, Umeda PK (1996) Fluorescence spectral properties of troponin C mutant F22W with one-, two-, and three-photon excitation. Biophys J 71(6):3448–3453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hahn S (2010) Prospektive klinische Studie zur Verlaufskontrolle der systemischen Sklerodermie und Graft – versus – Host – Erkrankung unter Therapie mit extrakorporaler Photopherese mittels 20-MHz-Sonografie und Multiphotonenlasertomografie. Jena, Univ., Diss.

    Google Scholar 

  • Han M, Bindewald-Wittich A, Holz FG et al (2006) Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells. J Biomed Opt 11(1):010501

    Article  PubMed  Google Scholar 

  • Hellwarth R, Christensen P (1974) Nonlinear optical microscopic examination of structure in polycrystalline ZnSe. Opt Commun 12(3):318–322

    Article  CAS  Google Scholar 

  • Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P) H and flavoprotein. Biophys J 82(5):2811–2825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaatz M, König K (2010) Multiphotonenmikroskopie und In-vivo-Multiphotonentomographie in der dermatologischen Bildgebung. Hautarzt 61:397–409

    Article  CAS  PubMed  Google Scholar 

  • Kaatz M, Sturm A, Elsner P, König K, Bückle R, Koehler MJ (2010) Depth-resolved measurement of the dermal matrix composition by multiphoton laser tomography. Skin Res Technol 16:131–136

    Article  PubMed  Google Scholar 

  • Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7:229–231

    Article  CAS  Google Scholar 

  • Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz–Schmidt KU, Esser PJ, Schraermeyer U (2001) Oxidation causes melanin fluorescence. Invest Ophthamol Vis Sci 42(1):241–246

    CAS  Google Scholar 

  • Koehler MJ, Hahn S, Preller A, Elsner P, Ziemer M, Bauer A, König K, Bückle R, Fluhr JW, Kaatz M (2008) Morphological skin ageing criteria by multiphoton laser scanning tomography: non-invasive in vivo scoring of the dermal fibre network. Exp Dermatol 17:519–523

    Article  PubMed  Google Scholar 

  • Koehler MJ, Kellner K, Hipler UC, Kaatz M (2014) Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 0:1–7

    CAS  Google Scholar 

  • Koehler MJ, Kellner K, Hipler UC, Kaatz M (2015) Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 21(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Koehler MJ, König K, Elsner P, Bückle R, Kaatz M (2006) In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt Lett 31(9):2879–2881

    Article  PubMed  Google Scholar 

  • Koehler MJ, Preller A, Kindler N et al (2009) Intrinsic, solar and sunbed-induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods. Skin Res Technol 15:357–363

    Article  PubMed  Google Scholar 

  • Koehler MJ, Speicher M, Lange-Asschenfeldt S, Stockfleth E, Metz S, Elsner P, Kaatz M, König K (2011a) Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases. Exp Dermatol 20:589–594

    Article  PubMed  Google Scholar 

  • Koehler MJ, Vogel T, Elsner P, König K, Bückle R, Kaatz M (2010) In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography. Skin Res Technol 16:259–264

    PubMed  Google Scholar 

  • Koehler MJ, Zimmermann S, Springer S, Elsner P, König K, Kaatz M (2011b) Keratinocyte morphology of human skin evaluated by in vivo multiphoton laser tomography. Skin Res Technol 17:479–486

    Article  CAS  PubMed  Google Scholar 

  • Koffie RM, Farrar CT, Saidi LJ et al (2011) Nanoparticles enhance brain delivery of blood – brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. PNAS 108(46):18837–18842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • König K (2000) Laser tweezers and multiphoton microscopes in life sciences. Histochem Cell Biol 114:79–92

    PubMed  Google Scholar 

  • König K (2008) Clinical multiphoton tomography. J Biophoton 1:13–23

    Article  Google Scholar 

  • König K, Bückle R, Weinigel M, Köhler J, Elsner P et al (2009) In vivo multiphoton tomography in skin aging studies. Proc SPIE7161, Photonic Therapeutics and Diagnostics V: 71610H

    Google Scholar 

  • König K, Ehlers A, Stracke F, Riemann I (2006) In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol Appl Skin Physiol 19:78–88

    Article  Google Scholar 

  • König K, Raphael AP, Lin L et al (2011) Applications of multiphoton tomographs and femtosecond laser nanoprocessing microscopes in drug delivery research. Adv Drug Deliver Rev 63:388–404

    Article  Google Scholar 

  • König K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:450–459

    Article  Google Scholar 

  • König K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluorescence 4(1):17–40

    Article  Google Scholar 

  • König K, Schneckenburger H, Meyer H, Rueck A (1995) Fluoreszenzverhalten und photodynamische Aktivität von Propionibacterium acnes. Akt Dermatol 19:199–201

    Google Scholar 

  • König K, Wabnitz H (1990) Fluoreszenzuntersuchungen mit hoher zeitlicher, spektraler und räumlicher Auflösung. Labortechnik 23:26–31

    Google Scholar 

  • Kwan AC, Duff K, Gouras GK, Webb WW (2009) Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Opt Express 17:3679–3689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Labouta HI, Liu DC, Lin LL et al (2011) Gold Nanoparticle Penetration and Reduced Metabolism in Human Skin by Toluene. Pharm Res 28:2931–2944

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89(4):1271–1275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JN, Jee SH, Chan CC et al (2008) The effects of depilatory agents as penetration enhancers on human stratum corneum structures. J Invest Dermatol 128:2240–2247

    Article  CAS  PubMed  Google Scholar 

  • Leite-Silva VR, Lamer ML, Sanchez WY et al (2013) The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo. Eur J Pharm Biopharm 84:297–308

    Article  CAS  PubMed  Google Scholar 

  • Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91(4):1908–1912

    Article  PubMed  Google Scholar 

  • Lin SJ, Lo W, Tan HY et al (2006) Prediction of heatinduced collagen shrinkage by use of second harmonic generation microscopy. J Biomed Opt 11:34020

    Article  PubMed  Google Scholar 

  • Lin SJ, Wu RJ, Tan HY et al (2005) Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt Lett 30:2275–2277

    Article  PubMed  Google Scholar 

  • Lu K, Chen J, Zhou S, Zheng L, Jiang X, Zhu X, Zhao J (2009) Multiphoton laser scanning microscopy of localized scleroderma. Skin Res Technol 15:489–495

    Article  PubMed  Google Scholar 

  • Manfredini M, Arginelli F, Dunsby C, French P, Talbot C, König K, Pellacani G, Ponti G, Seidenari S (2013) High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy. Skin Res Technol 19:e433–e443

    Article  PubMed  Google Scholar 

  • Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG (2002) Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci 43(7):2435–2441

    PubMed  Google Scholar 

  • Masters BR, So PTC, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72:2405–2412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masters BR, So PTC, Gratton E (1998) Multiphoton excitation microscopy of in vivo human skin. Ann N Y Acad Sci 838:58–67

    Article  CAS  PubMed  Google Scholar 

  • Masters BR, So PT (1999) Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: A comparison. Microsc Microanal 5(4):282–289

    Article  CAS  PubMed  Google Scholar 

  • Nava RG, Li W, Gelman AE, Krupnick AS, Miller MJ, Kreisel D (2010) Two-photon microscopy in pulmonary research. Semin Immunpathol 32:297–304

    Article  Google Scholar 

  • Paoli J, Smedh M, Ericson MB (2009) Multiphoton laser scanning microscopy – a novel diagnostic method for superficial skin cancers. Semin Cutan Med Surg 28(3):190–195

    Article  CAS  PubMed  Google Scholar 

  • Paoli J, Smedh M, Wennberg AM, Ericson MB (2008) Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. J Invest Dermatol 128:1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Pena AM, Fabre A, Debarre D, Marchal-Somme J et al (2007) Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy. Microsc Res Tech 70:162–170

    Article  PubMed  Google Scholar 

  • Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ (2004) Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol 92(1):199–211

    Article  CAS  PubMed  Google Scholar 

  • Rogart JN, Nagata J, Loeser CS, Roorda RD, Aslanian H, Robert ME, Zipfel WR, Nathanson MH (2008) Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo. Clin Gastroenterol Hepatol 6:95–101

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanchez WY, Prow TW, Sanchez WH, Grice JE, Roberts MS (2010) Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt 15(4):046008-1-11

    Article  Google Scholar 

  • Schenke-Layland K, Stock UA, Nsair A, Xie J et al (2009) Cardiomyopathy is associated with structural remodeling of heart valve extracellular matrix. Europ Heart J 30:2254–2265

    Article  Google Scholar 

  • Schenke-Layland K, Xie J, Angelis E, Starcher B, Wu K, Riemann I, MacLellan WR, Hamm-Alvarez SF (2008) Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjögren’s syndrome. Matrix Biol 27(1):53–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidenari S, Arginelli F, Bassoli S, Cautela J, Cesinaro AM, Guanti M, Guardoli D, Magnoni C, Manfredini M, Ponti G, König K (2013a) Diagnosis of BCC by multiphoton laser tomography. Skin Res Technol 19:e297–e304

    Article  PubMed  Google Scholar 

  • Seidenari S, Arginelli F, Dunsby C, French P, König K, Magnoni C, Manfredini M, Talbot C, Ponti G (2012) Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics. Exp Dermatol 21:831–836

    Article  PubMed  Google Scholar 

  • Seidenari S, Arginelli F, Dunsby C, French PMW, König K, Magnoni C, Talbot C, Ponti G (2013b) multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. Plos one 8(7):e70682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seidenari S, Schianchi S, Azzoni P, Benassi L, Borsari S, Cautela J, Ferrari C, French P, Giudice S, Koenig K, Magnoni C, Talbot C, Dunsby C (2013c) High-resolution multiphoton tomography and fluorescence lifetime imaging of UVB-induced cellular damage on cultured fibroblasts producing fibres. Skin Res Technol 19:251–257

    Article  Google Scholar 

  • Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N (2007a) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12(2):024014

    Article  PubMed Central  PubMed  Google Scholar 

  • Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007b) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104(49):19494–19499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sordillo LA, Pu Y, Pratavieira S, Budansky Y, Alfano RR (2014) Deep optical imaging of tissue using the second and third near-infrared spectral windows. J Biomed Opt 19(5):056004

    Article  PubMed  Google Scholar 

  • Teuchner K, Mueller S, Freyer W, Leupold D, Altmeyer P, Stuecker M, Hoffmann K (2003) Femtosecond twophoton-excited fluorescence of melanin. In: Belfield KD, Caracci SJ, Kajzar F, Lawson CM, Yeates AT (Hrsg) Multiphoton absorption and nonlinear transmission processes: Materials, theory, and applications. SPIE 211–219

    Google Scholar 

  • Tian GF, Takano T, Lin JHC, Wang X, Bekar L, Nedergaard M (2006) Imaging of cortical astrocytes using 2-photon laser scanning microscopy in the intact mouse brain. Adv Drug Deliv Rev 58(7):773–787

    Article  CAS  PubMed  Google Scholar 

  • Tsai TH, Jee SH, Dong CY, Lin SJ (2009) Multiphoton microscopy in dermatological imaging. J Dermatol Sci 56:1–8

    Article  PubMed  Google Scholar 

  • Ulrich M, Klemp M, Darvin ME, König K, Lademann J, Meinke MC (2013) In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph. J Biomed Opt 18(6):61229

    Article  PubMed  Google Scholar 

  • Wang BG, König K, Halbhuber KJ (2006a) Corneal multiphoton microscopy and intratissue optical nanosurgery by nanojoule femtosecond near-infrared pulsed lasers. Ann Anat 188(5):395–409

    Article  PubMed  Google Scholar 

  • Wang BG, König K, Halbhuber KJ (2007a) Intraocular nonlinear optical tomography and corneal flap generation using nanojoule femtosecond near-infrared lasers. Clin Surg Ophthalmol 25(7):246

    Google Scholar 

  • Wang BG, König K, Halbhuber KJ (2010) Two-photon microscopy of deep intravital tissue and ist merits in clinical research. J Microsc 238(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Wang BG, König K, Riemann I, Krieg R, Halbhuber KJ (2006b) Intraocular multiphotonmicroscopy with subcellular spatial resolution by infrared femtosecond lasers. Histochem Cell Biol 126(4):507–515

    Article  CAS  PubMed  Google Scholar 

  • Wang BG, Riemann I, Schubert H, Schweitzer D, König K, Halbhuber KJ (2007b) Multiphoton microscopy for monitoring intratissue femtosecond laser surgery effects. Lasers Surg Med 39(6):527–533

    Article  PubMed  Google Scholar 

  • Yu B, Dong CY, So PT et al (2001) In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J Invest Dermatol 117:16–25

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Kim KH, So PTC et al (2003) Visualization of oleic acidinduced transdermal diffusion pathways using two-photon fluorescence microscopy. J Invest Dermatol 120:448–455

    Article  CAS  PubMed  Google Scholar 

  • Zieger M, Springer S, Koehler MJ, Kaatz M (2015) Multiphotonentomographie. Hautarzt 66:511–521

    Article  CAS  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoumi A, Lu X, Kassab GS, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and twophoton fluorescence microscopy. Biophys J 87(4):2778–2786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zieger, M., Springer, S., Koehler, M.J., Kaatz, M. (2016). Multiphotonentomographie. In: Welzel, J., Sattler, E. (eds) Nichtinvasive physikalische Diagnostik in der Dermatologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46389-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46389-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46388-8

  • Online ISBN: 978-3-662-46389-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics