Skip to main content

FWA for Multiobjective Optimization

  • Chapter
  • First Online:
Fireworks Algorithm
  • 1369 Accesses

Abstract

This chapter is to present some research works of FWA for multiobjective optimization, of which this is a successful instance like the multiobjective fireworks algorithm (MOFWA) proposed by Zheng et al. (2013) Applied Soft Computing 13(11):4253–4263, [1] for oil crop fertilization, which takes into consideration not only crop yield and quality but also energy consumption and environmental effects. The variable-rate fertilization (VRF) is a key aspect of prescription generation in precision agriculture, which typically involves multiple criteria and objectives. To solve the problem efficiently, a hybrid multiobjective fireworks optimization algorithm (MOFWA) is proposed to evolve a set of solutions to the Pareto optimal front by mimicking the explosion of fireworks. Especially, MOFWA uses the concept of Pareto dominance for individual evaluation and selection, and combines differential evolution (DE) operators to increase information sharing among the individuals. The proposed MOFWA outperforms some state-of-the-art methods on a set of real-world VRF problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the fields with the same or similar soil conditions, their equations can have the same coefficients. This is also the case for some coefficients in the following computational equations.

  2. 2.

    If the soil conditions vary greatly from the different fields, we may need to define the coefficients \(\mu _{\textit{ij}}\) and \(\nu _{\textit{ij}}\) for not only different kinds of fertilizer but also different fields. However, the goal is to improve the homogeneity of fertilizer content among the fields with the same or similar soil conditions.

References

  1. Y.-J. Zheng, Q. Song, S.-Y. Chen, Multiobjective fireworks optimization for variable-rate fertilization in oil crop production. Appl. Soft Comput. 13(11), 4253–4263 (2013)

    Article  Google Scholar 

  2. K.S. Raju, D.N. Kumar, Multicriterion decision making in irrigation planning. Agric. Syst. 62(2), 117–129 (1999)

    Article  Google Scholar 

  3. C. Shouyu, Fuzzy optimization of multi-dimensional multi-objective dynamic programming and its application to farm irrigation. J. Hydraul. Eng. 4, 33–38 (2002)

    Google Scholar 

  4. M. Kilic, S. Anac, Multi-objective planning model for large scale irrigation systems: method and application. Water Resour. Manag. 24(12), 3173–3194 (2010)

    Article  Google Scholar 

  5. Y. Wang, D. Zhang, The optimization model of multi-objective fertilization of rice seedbed. J. Biomath. 18(4), 467–472 (2002)

    Google Scholar 

  6. Y. Yuan, L. Mao, L. Lujiu, Z. Guobing, C. Xi, W. Li, Algorithm of fertilization model based on intelligent computing. Trans. Chin. Soc. Agric. Eng. 12, 2008 (2008)

    Google Scholar 

  7. Y. Helong, D. Liu, G. Chen, B. Wan, S. Wang, B. Yang, A neural network ensemble method for precision fertilization modeling. Math. Comput. Model. 51(11), 1375–1382 (2010)

    Google Scholar 

  8. C.A.C. Coello, D.A. Van Veldhuizen, G.B. Lamont, Evolutionary Algorithms for Solving Multi-objective Problems, vol. 242 (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  9. N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  10. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  12. J.D. Knowles, D.W. Corne, M-PAES: a memetic algorithm for multiobjective optimization, in Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1 (IEEE, 2000), pp. 325–332

    Google Scholar 

  13. H.A. Abbass, R. Sarker, C. Newton, PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems, in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2 (IEEE, 2001), pp. 971–978

    Google Scholar 

  14. X. Li, A non-dominated sorting particle swarm optimizer for multiobjective optimization, in Genetic and Evolutionary Computation GECCO 2003 (Springer, Berlin, 2003), pp. 37–48

    Google Scholar 

  15. Z. Zhang, Immune optimization algorithm for constrained nonlinear multiobjective optimization problems. Appl. Soft Comput. 7(3), 840–857 (2007)

    Article  Google Scholar 

  16. C.K. Goh, K.C. Tan, D.S. Liu, S.C. Chiam, A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design. Eur. J. Oper. Res. 1, 42–54 (2010)

    Google Scholar 

  17. C. Shi, Z. Yan, Z. Shi, L. Zhang, A fast multi-objective evolutionary algorithm based on a tree structure. Appl. Soft Comput. 10(2), 468–480 (2010)

    Article  MathSciNet  Google Scholar 

  18. P.K. Tripathi, S. Bandyopadhyay, S.K. Pal, An adaptive multi-objective particle swarm optimization algorithm with constraint handling, in Handbook of Swarm Intelligence, ed. by B.K. Panigrahi, Y. Shi, M.-H. Lim. Adaptation, Learning, and Optimization, vol. 8 (Springer, Berlin, 2011), pp. 221–239

    Google Scholar 

  19. W.K. Mashwani, A. Salhi, A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation. Appl. Soft Comput. 12(9), 2765–2780 (2012)

    Google Scholar 

  20. D. Chen, F. Zou, J. Wang, A multi-objective endocrine PSO algorithm and application. Appl. Soft Comput. 11(8), 4508–4520 (2011)

    Article  Google Scholar 

  21. A. Zhou, Q. Bo-Yang, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  22. S. Chen, Y. Zheng, C. Cattani, W. Wang, Modeling of biological intelligence for SCM system optimization. Comput. Math. Methods Med. 2012, 30 (2011)

    Google Scholar 

  23. T. Niknam, M. Zare, J. Aghaei, Scenario-based multiobjective Volt/Var control in distribution networks including renewable energy sources. IEEE Trans. Power Deliv. 27(4), 2004–2019 (2012)

    Google Scholar 

  24. P. Ahmadi, M.A. Rosen, I. Dincer, Multi-objective exergy-based optimization of a polygeneration energy system using an evolutionary algorithm. Energy 46(1), 21–31 (2012)

    Article  Google Scholar 

  25. T. Niknam, H. Zeinoddini Meymand, H. Doagou Mojarrad, An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants. Energy 36(1), 119–132 (2011)

    Google Scholar 

  26. T. Niknam, A. Kavousifard, S. Tabatabaei, J. Aghaei, Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks. J. Power Sources 196(20), 8881–8896 (2011)

    Article  Google Scholar 

  27. P. Ahmadi, I. Dincer, Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl. Therm. Eng. 31(14–15), 2529–2540 (2011)

    Google Scholar 

  28. Y.-J. Zheng, S.-Y. Chen, Y. Lin, W.-L. Wang, Bio-inspired optimization of sustainable energy systems: a review. Math. Probl. Eng. 2013, 28 (2013)

    Google Scholar 

  29. M. Janga Reddy, D. Nagesh Kumar, Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrig. Sci. 26(2), 177–190 (2008)

    Google Scholar 

  30. Y. Tan, Y. Zhu, Fireworks algorithm for optimization, in Advances in Swarm Intelligence (Springer, Berlin, 2010), pp. 355–364

    Google Scholar 

  31. J. Kennedy, R. Eberhart et al., Particle swarm optimization, in Proceedings of IEEE international conference on neural networks, vol. 4 (Perth, Australia, 1995), pp. 1942–1948

    Google Scholar 

  32. Y. Tan, Z.M. Xiao, Clonal particle swarm optimization and its applications, in IEEE Congress on Evolutionary Computation. CEC 2007 (2007), pp. 2303–2309

    Google Scholar 

  33. Y.J. Zheng, X.L. Xu, H.F. Ling, A hybrid fireworks optimization method with differential evolution. Neurocomputing (2012)

    Google Scholar 

  34. R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  35. J.L. Yu, Agricultural Experiments with Polydesign (Beijing University of Agriculture Press, Beijing, 1993)

    Google Scholar 

  36. R.K. Ru, Soil Plant Nutrition Principles and Fertilization (Chemical Industry Press, Beijing, 1998)

    Google Scholar 

  37. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapmanand Hall, London, 1986)

    Book  MATH  Google Scholar 

  38. Z. Cai, Y. Wang, A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans. Evol. Comput. 10(6), 658–675 (2006)

    Article  Google Scholar 

  39. M.S. Alam, M.M. Islam, X. Yao, K. Murase, Diversity guided evolutionary programming: a novel approach for continuous optimization. Appl. Soft Comput. 12(6), 1693–1707 (2012)

    Google Scholar 

  40. J. Hájek, A. Szöllös, J. Šístek, A new mechanism for maintaining diversity of pareto archive in multi-objective optimization. Adv. Eng. Softw. 41(7), 1031–1057 (2010)

    Article  MATH  Google Scholar 

  41. W. Gong, Z. Cai, A multiobjective differential evolution algorithm for constrained optimization, in IEEE Congress on Evolutionary Computation. CEC 2008 (IEEE World Congress on Computational Intelligence, 2008), pp. 181–188

    Google Scholar 

  42. Q.-Y. Guo, Z.-Y. LI, X.-W. Tu, Plant nutritional aspects and effects of fertilizer application in rapeseed in red-yellow soil of South China. Fertilizer application of double-low rapeseed cultivar, zhongshuang no. 7 in red paddy soil. Chin. J. Oil Crop Sci. 1, 011 (2001)

    Google Scholar 

  43. L. Yankun, W. Huishan, H.J. Zhuang, Z. Lin, J.L. Yongye, Preliminary report on fertilization trial of canarium album. Guangdong For. Sci. Technol. 5, 004 (2007)

    Google Scholar 

  44. E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  45. J. Wei-yi Qian, Y. Yang, H.W. Yang, W. Jin-xia, A new random group search algorithm for solving the multi-objective programming problems. J. Liaoning Norm. Univ. Nat. Sci. 30(2), 141 (2007)

    MathSciNet  Google Scholar 

  46. D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Tan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tan, Y. (2015). FWA for Multiobjective Optimization. In: Fireworks Algorithm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46353-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46353-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46352-9

  • Online ISBN: 978-3-662-46353-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics