Use of Time-Dependent Spatial Maps of Communication Quality for Multi-robot Path Planning

  • Gianni A. Di Caro
  • Eduardo Feo FlushingEmail author
  • Luca M. Gambardella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8629)


We consider the path planning problem of mobile networked agents (e.g., robots) that have to travel towards assigned target locations. Robots’ path planners have to optimally balance potentially conflicting goals: keep the traveled distance within an assigned maximum value while, at the same time, let the robot reliably and effectively communicate with other robots in the multi-robot network, and reduce the risk of collisions. We propose a solution approach based on the integration of two components: a link quality predictor based on supervised learning, and a path optimizer, based on a mathematical programming formulation. The predictor is built offline and yields spatial predictions of the expected communication quality of the wireless links in terms of packet reception rate. Exploiting shared information about planned trajectories, these spatial predictions are used online by the robots to build time-dependent spatial maps of communication quality, to iteratively assess the best path to follow considering both local and prospective links, and to plan paths accordingly. To deal robustly with dynamic environments, path planning is implemented as a multi-stage scheme using a receding horizon strategy. The framework is evaluated in realistic simulation scenarios, showing the effectiveness of using the spatial predictor for the effective online planning of network-aware trajectories.


Network-aware path planning Mobile ad hoc networks Spatial link quality prediction 



This research has been partially funded by the Swiss National Science Foundation (SNSF) Sinergia project SWARMIX, project number CRSI22_133059.


  1. 1.
    Feo Flushing, E., Nagi, J., Di Caro, G.A.: A mobility-assisted protocol for supervised learning of link quality estimates in wireless networks. In: Proceedings of the International Conference on Computing, Networking and Communications (ICNC), pp. 137–143 (2012)Google Scholar
  2. 2.
    Di Caro, G.A., Kudelski, M., Feo Flushing, E., Nagi, J., Ahmed, I., Gambardella, L.: On-line supervised incremental learning of link quality estimates in wireless networks. In: Proceedings of the 12th IEEE/IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pp. 69–76 (2013)Google Scholar
  3. 3.
    Kudelski, M., Gambardella, L., Di Caro, G.A.: A mobility-controlled link quality learning protocol for multi-robot coordination tasks. In: Proceedings of the IEEE ICRA, pp. 5024–5031 (2014)Google Scholar
  4. 4.
    Kuwata, Y., How, J.P.: Cooperative distributed robust trajectory optimization using receding horizon MILP. IEEE Trans. Control Syst. Technol. 19(2), 423–431 (2011)CrossRefGoogle Scholar
  5. 5.
    Hsieh, M.A., Cowley, A., Kumar, V., Taylor, C.J.: Maintaining network connectivity and performance in robot teams. J. Field Robot. 25(1–2), 111–131 (2008)CrossRefGoogle Scholar
  6. 6.
    Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)CrossRefGoogle Scholar
  7. 7.
    Hollinger, G.A., Singh, S.: Multirobot coordination with periodic connectivity: theory and experiments. IEEE Trans. Robot. 28(4), 967–973 (2012)CrossRefGoogle Scholar
  8. 8.
    Tardioli, D., Mosteo, A.R., Riazuelo, L., Villarroel, J.L., Montano, L.: Enforcing network connectivity in robot team missions. Int. J. Robot. Res. 29(4), 460–480 (2010)CrossRefGoogle Scholar
  9. 9.
    Ghaffarkhah, A., Mostofi, Y.: Path planning for networked robotic surveillance. IEEE Trans. Signal Process. 60(7), 3560–3575 (2012)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Thunberg, J., Ögren, P.: A mixed integer linear programming approach to pursuit evasion problems with optional connectivity constraints. Auton. Rob. 31(4), 333–343 (2011)CrossRefGoogle Scholar
  11. 11.
    Gil, S., Feldman, D., Rus, D.: Communication coverage for independently moving robots. In: Proceedings of IEEE/RSJ IROS, pp. 4865–4872 (2012)Google Scholar
  12. 12.
    Yan, Y., Mostofi, Y.: Robotic router formation in realistic communication environments. IEEE Trans. Robot. 28(4), 810–827 (2012)CrossRefGoogle Scholar
  13. 13.
    Grøtli, E.I., Johansen, T.A.: Path planning for UAVs under communication constraints using SPLAT! and MILP. J. Intel. Robot. Syst. 65(1–4), 265–282 (2011)Google Scholar
  14. 14.
    Fink, J., Ribeiro, A., Kumar, V.: Robust control of mobility and communications in autonomous robot teams. IEEE Access 1, 290–309 (2013)CrossRefGoogle Scholar
  15. 15.
    Malmirchegini, M., Mostofi, Y.: On the spatial predictability of communication channels. IEEE Trans. Wireless Commun. 11(3), 964–978 (2012)CrossRefGoogle Scholar
  16. 16.
    Lindhe, M., Johansson, K.H.: Adaptive exploitation of multipath fading for mobile sensors. In: Proceedings of the IEEE ICRA, pp. 1934–1939 (2010)Google Scholar
  17. 17.
    Feo Flushing, E., Kudelski, M., Nagi, J., Gambardella, L., Di Caro, G.A.: Poster abstract: link quality estimation - a case study for on-line supervised learning in wireless sensor networks. In: Langendoen, K., Hu, W., Ferrari, F., Zimmerling, M., Mottola, L. (eds.) Real-World Wireless Sensor Networks. LNEE, vol. 281, pp. 97–101. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    NS-3. Discrete-event network simulator for Internet systems (2013).

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gianni A. Di Caro
    • 1
  • Eduardo Feo Flushing
    • 1
    Email author
  • Luca M. Gambardella
    • 1
  1. 1.Dalle Molle Institute for Artificial Intelligence (IDSIA)LuganoSwitzerland

Personalised recommendations