Rehabilitation and Return-to-Sports Activity After Debridement and Bone Marrow Stimulation of Osteochondral Talar Defects

  • R. M. Gerards
  • I. C. M. van Eekeren
  • C. Niek van Dijk


Osteochondral defects (OCDs), also known as osteochondritis dissecans, can cause pain and decreased function. An OCD is a lesion involving articular hyaline cartilage, the subchondral bone plate, and the subarticular spongiosa. OCDs of the talar bone can severely impact the quality of life. Most patients are known to be young and athletic. The primary treatment for OCDs consists of arthroscopic debridement and bone marrow stimulation.

In this chapter, we give an overview of the literature regarding rehabilitation and returning to sports after debridement and microfracturing of a talar OCD. We conclude there is no consensus about rehabilitation and time to return-to-sports activity. Factors that potentially speed up rehabilitation are early mobilization, treatment with growth factors, platelet-rich plasma, bisphosphonates, hyaluronic acid, and pulse electromagnetic fields.

Also, age, weight, and size of the OCD are important factors in the rehabilitation after debridement and microfracturing of a talar OCD.

We propose a scheme whereby return-to-sports activity is divided into four phases of increasing intensity: walking, jogging, return to noncontact sports, and return to contact sports.


Hyaluronic Acid Weight Bearing Full Weight Bearing Osteochondritis Dissecans Partial Weight Bearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schuman L, Struijs PA, van Dijk CN (2002) Arthroscopic treatment for osteochondral defects of the talus: results at follow-up at 2 to 11 years. J Bone Joint Surg Br 84(3):364–368CrossRefPubMedGoogle Scholar
  2. 2.
    Verhagen RA, Maas M, Dijkgraaf MG et al (2005) Prospective study on diagnostic strategies in osteochondral lesions of the talus: is MRI superior to helical CT? J Bone Joint Surg Br 87(1):41–46PubMedGoogle Scholar
  3. 3.
    Potter HG, le Chong R, Sneag DB (2008) Magnetic resonance imaging of cartilage repair. Sports Med Arthrosc 16:236–245CrossRefPubMedGoogle Scholar
  4. 4.
    Leumann A, Valderrabano V, Plaass C et al (2011) A novel imaging method for osteochondral lesions of the talus comparison of SPECT-CT with MRI. Am J Sports Med 39:1095–1101CrossRefPubMedGoogle Scholar
  5. 5.
    Zengerink M, Struijs PA, Tol JL et al (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18(2):238–246CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Robinson DE, Winson IG, Harries WJ et al (2003) Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Br 85(7):989–993CrossRefPubMedGoogle Scholar
  7. 7.
    Zengerink M, Szerb I, Hangody L et al (2006) Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin 11(2):331–359, viCrossRefPubMedGoogle Scholar
  8. 8.
    Cerynik DL, Lewullis GE, Joves BC et al (2009) Outcomes of microfracture in professional basketball players. Knee Surg Sports Traumatol Arthrosc 17(9):1135–1139CrossRefPubMedGoogle Scholar
  9. 9.
    Mithoefer K, Williams RJ III, Warren RF et al (2006) High impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34(9):1413–1418CrossRefPubMedGoogle Scholar
  10. 10.
    Saxena A, Eakin C (2007) Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med 35(10):1680–1687CrossRefPubMedGoogle Scholar
  11. 11.
    Compston J (2002) Bone marrow and bone: a functional unit. J Endocrinol 173:387–394CrossRefPubMedGoogle Scholar
  12. 12.
    Frisbie DD, Oxford JT, Southwood L et al (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res 407:215–227CrossRefPubMedGoogle Scholar
  13. 13.
    O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80(12):1795–1812PubMedGoogle Scholar
  14. 14.
    Gill TJ, McCulloch PC, Glasson SS et al (2005) Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med 33(5):680–685CrossRefPubMedGoogle Scholar
  15. 15.
    Qiu YS, Shahgaldi BF, Revell WJ et al (2003) Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthritis Cartilage 11(11):810–820CrossRefPubMedGoogle Scholar
  16. 16.
    Watanabe A, Boesch C, Anderson SE et al (2009) Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study. Osteoarthritis Cartilage 17(10):1341–1349CrossRefPubMedGoogle Scholar
  17. 17.
    Furukawa T, Eyre DR, Koide S et al (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 62(1):79–89PubMedGoogle Scholar
  18. 18.
    Halasi T, Kynsburg A, Tallay A et al (2004) Development of a new activity score for the evaluation of ankle instability. Am J Sports Med 32(4):899–908CrossRefPubMedGoogle Scholar
  19. 19.
    Roles NC, Maudsley RH (1972) Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg Br 54(3):499–508PubMedGoogle Scholar
  20. 20.
    van Sterkenburg MN, Donley BG, van Dijk CN (2008) Guidelines for sport resumption. In: van Dijk CN, Karlsson J, Maffuli N (eds) Achilles tendon rupture. DJO Publications, Surrey, pp 107–116Google Scholar
  21. 21.
    Chuckpaiwong B, Berkson EM, Theodore GH (2008) Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy 24(1):106–112CrossRefPubMedGoogle Scholar
  22. 22.
    Guo QW, Hu YL, Jiao C et al (2010) Arthroscopic treatment for osteochondral lesions of the talus: analysis of outcome predictors. Chin Med J (Engl) 123(3):296–300Google Scholar
  23. 23.
    Lee KB, Bai LB, Chung JY et al (2010) Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 18(2):247–253CrossRefPubMedGoogle Scholar
  24. 24.
    Seijas R, Alvarez P, Ares O et al (2010) Osteocartilaginous lesions of the talus in soccer players. Arch Orthop Trauma Surg 130(3):329–333CrossRefPubMedGoogle Scholar
  25. 25.
    Ogilvie-Harris DJ, Sarrosa EA (1999) Arthroscopic treatment of osteochondritis dissecans of the talus. Arthroscopy 15(8):805–808CrossRefPubMedGoogle Scholar
  26. 26.
    Barnes CJ, Ferkel RD (2003) Arthroscopic debridement and drilling of osteochondral lesions of the talus. Foot Ankle Clin 8(2):243–257CrossRefPubMedGoogle Scholar
  27. 27.
    van Bergen CJ, de Leeuw PA, van Dijk CN (2008) Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot 94(8 Suppl):398–408CrossRefPubMedGoogle Scholar
  28. 28.
    van Bergen CJ, Blankevoort L, de Haan RJ et al (2009) Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord 10:83CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Choi WJ, Kim BS, Lee JW (2012) Osteochondral lesion of the talus: could age be an indication for arthroscopic treatment? Am J Sports Med 40(2):419–424CrossRefPubMedGoogle Scholar
  30. 30.
    Lee DH, Lee KB, Jung ST, Seon JK, Kim MS, Sung IH (2012) Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med 40(9):2023–2028CrossRefPubMedGoogle Scholar
  31. 31.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  32. 32.
    Kumai T, Takakura Y, Higashiyama I et al (1999) Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am 81(9):1229–1235PubMedGoogle Scholar
  33. 33.
    Becher C, Thermann H (2005) Results of microfracture in the treatment of articular cartilage defects of the talus. Foot Ankle Int 26:583–589PubMedGoogle Scholar
  34. 34.
    Robinson DE, Winson IG, Harries WJ, Kelly AJ (2003) Arthroscopic treatment of osteochondral lesion of the talus. J Bone Joint Surg Br 85:989–993CrossRefPubMedGoogle Scholar
  35. 35.
    Convery FR, Akeson WH, Keown GH (1972) The repair of large osteochondral defects: an experimental study in horses. Clin Orthop Relat Res 82:253–262CrossRefPubMedGoogle Scholar
  36. 36.
    Choi WJ, Park KK, Kim BS, Lee JW (2009) Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med 37:1974–1980CrossRefPubMedGoogle Scholar
  37. 37.
    Petrella RJ, Petrella M (2006) A prospective, randomized, double-blind, placebo controlled study to evaluate the efficacy of intra-articular hyaluronic acid for osteoarthritis of the knee. J Rheumatol 33(5):951–956PubMedGoogle Scholar
  38. 38.
    Salk RS, Chang TJ, D’Costa WF, Soomekh DJ, Grogan KA (2006) Sodium hyaluronate in the treatment of osteoarthritis of the ankle: a controlled, randomized, double-blind pilot study. J Bone Joint Surg Am 88(2):295–302CrossRefPubMedGoogle Scholar
  39. 39.
    Mei-Dan O, Maoz G, Swartzon M et al (2008) Treatment of osteochondritis dissecans of the ankle with hyaluronic acid injections: a prospective study. Foot Ankle Int 29(12):1171–1178CrossRefPubMedGoogle Scholar
  40. 40.
    Abatangelo G, O’Regan M (1995) Hyaluron: biological role and function in articular joints. Eur J Rheumatol Inflamm 151:9–16Google Scholar
  41. 41.
    Caplan N1, Forbes A, Radha S, Stewart S, Ewen A, St Clair Gibson A, Kader D. One Week of Unilateral Ankle Immobilisation Alters Plantarflexor Strength, Balance and Walking Speed: A Pilot Study in Asymptomatic Volunteers. J Sport Rehabil. 2014 Oct 30. [Epub ahead of print] DOI:  10.1123/jsr.2013-0137
  42. 42.
    Exercise on the healing of articular cartilage defects in the equine carpus. Vet Surg. 1989;18(4):312–321Google Scholar
  43. 43.
    Jurvelin J, Kiviranta I, Tammi M et al (1986) Effect of physical exercise on indentation stiffness of articular cartilage in the canine knee. Int J Sports Med 7(2):106–110CrossRefPubMedGoogle Scholar
  44. 44.
    Kiviranta I, Tammi M, Jurvelin J et al (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6(2):188–195CrossRefPubMedGoogle Scholar
  45. 45.
    Oettmeier R, Arokoski J, Roth AJ et al (1992) Quantitative study of articular cartilage and subchondral bone remodeling in the knee joint of dogs after strenuous running training. J Bone Miner Res 7(Suppl 2):419–424CrossRefGoogle Scholar
  46. 46.
    Palmer JL, Bertone AL, Malemud CJ et al (1995) Site-specific proteoglycan characteristics of third carpal articular cartilage in exercised and nonexercised horses. Am J Vet Res 56(12):1570–1576PubMedGoogle Scholar
  47. 47.
    Akeda K, An HS, Okuma M et al (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 14(12):1272–1280CrossRefPubMedGoogle Scholar
  48. 48.
    Mishra A, Tummala P, King A et al (2009) Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods 15(3):431–435CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Morales TI (2008) The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis. J Orthop Res 26(4):465–474CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Nixon AJ, Fortier LA, Williams J et al (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res 17(4):475–487CrossRefPubMedGoogle Scholar
  51. 51.
    Madry H, Kaul G, Cucchiarini M et al (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12(15):1171–1179CrossRefPubMedGoogle Scholar
  52. 52.
    Schmidt MB, Chen EH, Lynch SE (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage 14(5):403–412CrossRefPubMedGoogle Scholar
  53. 53.
    Goodrich LR, Hidaka C, Robbins PD et al (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 89(5):672–685CrossRefPubMedGoogle Scholar
  54. 54.
    Fortier LA, Mohammed HO, Lust G, Nixon AJ (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84(2):276–288CrossRefPubMedGoogle Scholar
  55. 55.
    Chubinskaya S, Hurtig M, Rueger DC (2007) OP-1/BMP-7 in cartilage repair. Int Orthop 31:773–781. doi: 10.1007/s00264-007-0423-9 CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Hulth A, Johnell O, Miyazono K, Lindberg L, Heinegard D, Heldin C-H (1996) Effect of transforming growth factor-B and platelet-derived growth factor-BB on articular cartilage in rats. J Orthop Res 14:547–553. doi: 10.1002/jor.1100140408 CrossRefPubMedGoogle Scholar
  57. 57.
    Fortier LA, Barker JU, Strauss EJ et al (2011) The role of growth factors in cartilage repair. Clin Orthop Relat Res 469(10):2706–2715CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Davies LC, Blain EJ, Gilbert SJ et al (2008) The potential of IGF-1 and TGFbeta1 for promoting “adult” articular cartilage repair: an in vitro study. Tissue Eng Part A 14(7):1251–1261CrossRefPubMedGoogle Scholar
  59. 59.
    van Bergen CJ, Blankevoort L, de Haan RJ et al (2009) Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord 10:83CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Aaron RK, Wang S, Ciombor DM (2002) Upregulation of basal TGFbeta1 levels by EMF coincident with chondrogenesis: implications for skeletal repair and tissue engineering. J Orthop Res 20(2):233–240CrossRefPubMedGoogle Scholar
  61. 61.
    Benazzo F, Cadossi M, Cavani F et al (2008) Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res 26(5):631–642CrossRefPubMedGoogle Scholar
  62. 62.
    Ciombor DM, Lester G, Aaron RK et al (2002) Low frequency PEMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res 20(1):40–50CrossRefPubMedGoogle Scholar
  63. 63.
    De MM, Caruso A, Pezzetti F et al (2001) Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res 42(4):269–279CrossRefGoogle Scholar
  64. 64.
    De MM, Pasello M, Pellati A, et al. Effects of electromagneticGoogle Scholar
  65. 65.
    fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res 2003; 44 (3–4): 154–9Google Scholar
  66. 66.
    De MM, Fini M, Setti S et al (2007) Proteoglycan synthesis in bovine articular cartilage explants exposed to different low-frequency low-energy pulsed electromagnetic fields. Osteoarthritis Cartilage 15(2):163–168CrossRefGoogle Scholar
  67. 67.
    Pezzetti F, De MM, Caruso A et al (1999) Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. Calcif Tissue Int 65(5):396–401CrossRefPubMedGoogle Scholar
  68. 68.
    Cane V, Botti P, Soana S (1993) Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect. J Orthop Res 11(5):664–670CrossRefPubMedGoogle Scholar
  69. 69.
    Zorzi C, Dall’Oca C, Cadossi R et al (2007) Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: prospective, randomized and double-blind study. Knee Surg Sports Traumatol Arthrosc 15(7):830–834CrossRefPubMedGoogle Scholar
  70. 70.
    Chen YJ, Wurtz T, Wang CJ et al (2004) Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 22(3):526–534CrossRefPubMedGoogle Scholar
  71. 71.
    Wang Q, Li ZL, Fu YM et al (2011) Effect of low-energy shock waves in microfracture holes in the repair of articular cartilage defects in a rabbit model. Chin Med J (Engl) 124(9):1386–1394Google Scholar
  72. 72.
    Nishitani K, Shirai T, Kobayashi M et al (2009) Positive effect of alendronate on subchondral bone healing and subsequent cartilage repair in a rabbit osteochondral defect model. Am J Sports Med 37(Suppl 1):139–147CrossRefGoogle Scholar

Copyright information

© ISAKOS 2015

Authors and Affiliations

  • R. M. Gerards
    • 1
  • I. C. M. van Eekeren
    • 2
  • C. Niek van Dijk
    • 3
  1. 1.Department of Orthopedic SurgeryAcademic Medical Center AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Orthopedic SurgeryAcademic Medical Center AmsterdamAmsterdamThe Netherlands
  3. 3.Orthopaedic SurgeryUniversity of Amsterdam Academic Medical CentreAmsterdamThe Netherlands

Personalised recommendations