Quarks, Gluons, and the Strong Interaction

  • Bogdan Povh
  • Klaus Rith
  • Christoph Scholz
  • Frank Zetsche
  • Werner Rodejohann
Part of the Graduate Texts in Physics book series (GTP)


Information about the strong interaction and its field quanta can be obtained from hadron spectroscopy and, e.g., from deep-inelastic scattering experiments with high-energy muon beams or at the electron-hadron collider HERA. Quarks carry colour charge and form bound systems of colourless mesons and baryons by the exchange of coloured gluons. This interaction leads to scaling violations, i.e., the dependence of the structure functions on the momentum transfer, that are proportional to the strong coupling constant α s . Data from deep-inelastic scattering and hadron-hadron interactions allow the determination of flavour-separated parton distributions. Nuclear effects in deep-inelastic scattering arise due to a modification of the parton momentum distributions by the surrounding nuclear medium.


Structure Function Virtual Photon Quantum Chromodynamics Gluon Distribution Valence Quark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    I. Abt et al., Nucl. Instr. Methods A386, 310 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    K. Ackerstaff et al., Phys. Rev. Lett. 81, 5519 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    G. Altarelli, G. Parisi, Nucl. Phys. B126, 298 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    P. Amaudruz et al., Z. Phys. C51, 387 (1991);corrected data: P. Amaudruz et al., Nucl. Phys. B441, 3 (1995)Google Scholar
  5. 5.
    P. Amaudruz et al., Phys. Lett. B295, 159 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    M. Arneodo et al., Phys. Lett. B309, 222 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    R.G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984);corrected data: J. Gomez et al., Phys. Rev.D49, 4348 (1994)Google Scholar
  8. 8.
    J.J. Aubert et al., Phys. Lett. B123, 275 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    C. Diaconu et al., Annu. Rev. Nucl. Part. Sci. 60, 101 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S.D. Drell, T.M. Yan, Ann. Phys. (NY) 66, 578 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  13. 13.
    E.A. Hawker et al., Phys. Rev. Lett. 80, 3715 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    U. Holm et al., ZEUS Status Report (1993),
  15. 15.
    B.Z. Kopeliovich, J. Morfin, I. Schmidt, Prog. Part. Nucl. Phys. 68, 314 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975)Google Scholar
  17. 17.
    A. Martin et al., Eur. Phys. J. C63, 189 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    H. Nishino et al., Phys. Rev. Lett. 102, 141801 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    P.R. Norton, Rep. Prog. Phys. 66, 1253 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Particle Data Group, J. Beringer et al., Review of particle properties. Phys. Rev. D 86, 010001 (2012)Google Scholar
  21. 21.
    L. Whitlow et al., Phys. Lett. B282, 475 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bogdan Povh
    • 1
  • Klaus Rith
    • 2
  • Christoph Scholz
    • 3
  • Frank Zetsche
    • 4
  • Werner Rodejohann
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Department PhysikUniversität Erlangen-NürnbergErlangenGermany
  3. 3.SAP AGWalldorfGermany
  4. 4.DFS Deutsche Flugsicherung GmbHLangenGermany

Personalised recommendations