Advertisement

Exchange Bosons of the Weak Interaction and the Higgs Boson

  • Bogdan Povh
  • Klaus Rith
  • Christoph Scholz
  • Frank Zetsche
  • Werner Rodejohann
Part of the Graduate Texts in Physics book series (GTP)

Abstract

The idea that the weak interaction is mediated by very heavy exchange bosons was confirmed when the W and the Z bosons were detected experimentally and their properties could be measured. The Z0 boson’s properties imply a mixing of the electromagnetic and weak interactions as described by the electroweak unification theory due to Glashow, Salam and Weinberg. Necessary for a consistent description of electromagnetic and weak interactions is a concept called symmetry breaking, related to a new scalar particle. The discovery of this Higgs particle was a spectacular confirmation of the ideas and concepts behind the Standard Model.

Keywords

Higgs Boson Large Hadron Collider Charged Lepton Compact Muon Solenoid Gluon Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Aad et al., Phys. Lett. B726, 88 (2013)ADSGoogle Scholar
  2. 2.
    F.D. Aaron et al., JHEP 1209, 061 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    V.M. Abazov et al., Phys. Rev. Lett. 108, 151804 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    U. Amaldi et al., Phys. Rev. D36, 1385 (1987)ADSGoogle Scholar
  5. 5.
    R. Ansari et al., Phys. Lett. B186, 440 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    G. Arnison et al., Phys. Lett. B122, 103 (1983); Phys. Lett. B126, 398 (1983); Phys. Lett. B166, 484 (1986)Google Scholar
  7. 7.
    P. Bagnaia et al., Phys. Lett. B129, 130 (1983)ADSCrossRefGoogle Scholar
  8. 8.
    M. Banner et al., Phys. Lett. B122, 476 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    H. Burkhardt, J. Steinberger, Annu. Rev. Nucl. Part. Sci. 41, 55 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    G. Costa et al., Nucl. Phys. B297, 244 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ellis et al., Annu. Rev. Nucl. Part. Sci. 32, 443 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S. Fanchiotti, A. Sirlin, Phys. Rev. D41, (1990) 319ADSGoogle Scholar
  14. 14.
    D. Froidevaux, P. Sphicas, Annu. Rev. Nucl. Part. Sci. 56, 375 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P.D. Granis, M.J. Shochet, Annu. Rev. Nucl. Part. Sci. 63, 467 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. Langacker, in Precision Tests of the Standard Electroweak Model, ed. by P. Langacker (World Scientific, Singapur, 1995)Google Scholar
  18. 18.
    O. Nachtmann, Elementary Particle Physics: Concepts and Phenomena (Springer, Berlin/Heidelberg/New York, 1990)CrossRefGoogle Scholar
  19. 19.
    Particle Data Group, J. Beringer et al., Review of Particle Properties. Phys. Rev. D 86, 010001 (2012)Google Scholar
  20. 20.
    The ATLAS collaboration, Phys. Lett. B716, 1 (2012)Google Scholar
  21. 21.
    The CMS collaboration, Phys. Lett. B716, 30 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bogdan Povh
    • 1
  • Klaus Rith
    • 2
  • Christoph Scholz
    • 3
  • Frank Zetsche
    • 4
  • Werner Rodejohann
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Department PhysikUniversität Erlangen-NürnbergErlangenGermany
  3. 3.SAP AGWalldorfGermany
  4. 4.DFS Deutsche Flugsicherung GmbHLangenGermany

Personalised recommendations