Phenomenology of the Weak Interaction

  • Bogdan Povh
  • Klaus Rith
  • Christoph Scholz
  • Frank Zetsche
  • Werner Rodejohann
Part of the Graduate Texts in Physics book series (GTP)


Quarks and leptons are equally affected by the weak interaction. At the beginning of this chapter we first present the properties of the three charged leptons and the associated neutrinos followed by a discussion of the various types of weak interactions: leptonic, semileptonic and non-leptonic processes. These are mediated by the exchange of the heavy W± and bosons. The coupling strength of the weak interaction is determined from muon decay. The CKM matrix is introduced, whose matrix elements quantify transitions from one quark flavour to another. The weak interaction violates parity conservation. Examples presented are the muon decay and the helicity suppressed pion decay. Finally, we present charged-current deep-inelastic scattering with beams of neutrinos and antineutrinos and of polarised electrons and positrons.


Weak Interaction Charged Lepton Parity Violation Pion Decay Quark Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.D. Aaron et al., JHEP 1209, 061 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    H. Albrecht et al., Phys. Lett. B234, 409 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    H. Albrecht et al., Phys. Lett. B255, 297 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    B.C. Barish, R. Stroynowski, Phys. Rep. 157, 1 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    D.I. Britton et al., Phys. Rev. Lett. 68, 3000 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    H. Burkard et al., Phys. Lett. B160, 343 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)ADSCrossRefGoogle Scholar
  9. 9.
    E.D. Commins, Weak Interactions (McGraw-Hill, New York, 1973)Google Scholar
  10. 10.
    C.L. Cowan Jr., F. Reines et al., Science 124, 103 (1956)ADSCrossRefGoogle Scholar
  11. 11.
    G. Danby et al., Phys. Rev. Lett. 9, 36 (1962)ADSCrossRefGoogle Scholar
  12. 12.
    E. Fermi, Z. Phys. 88, 161 (1934)ADSCrossRefGoogle Scholar
  13. 13.
    R. Fulton et al., Phys. Rev. Lett. 64, 16 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    F.J. Hasert et al., Phys. Lett. B46, 138 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    W.J. Marciano, Annu. Rev. Nucl. Part. Sci. 41, 469 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    E.A. Paschos, U. Türke, Phys. Rep. 178, 145 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Particle Data Group, L. Montanet et al., Review of Particle Properties. Phys. Rev. D50, 1173 (1994)Google Scholar
  19. 19.
    Particle Data Group, J. Beringer et al., Review of Particle Properties. Phys. Rev. D 86, 010001 (2012)Google Scholar
  20. 20.
    A.A. Sokolov, J.M. Ternov, Sov. Phys. Dokl. 8, 1203 (1964)ADSGoogle Scholar
  21. 21.
    C.S. Wu et al., Phys. Rev. 105, 1413 (1957)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bogdan Povh
    • 1
  • Klaus Rith
    • 2
  • Christoph Scholz
    • 3
  • Frank Zetsche
    • 4
  • Werner Rodejohann
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Department PhysikUniversität Erlangen-NürnbergErlangenGermany
  3. 3.SAP AGWalldorfGermany
  4. 4.DFS Deutsche Flugsicherung GmbHLangenGermany

Personalised recommendations