Skip to main content

Prediction of Lysine Acetylation Sites in Porcine Pancreas Lipase Modified by the Ionic Liquids Using Molecular Dynamics Simulations

  • Conference paper
  • First Online:
Advances in Applied Biotechnology

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 333))

  • 1873 Accesses

Abstract

.

The molecular dynamics (MD) simulations method was used to study the lysine acetylation sites of Porcine Pancreas lipase (PPL) modified by ionic liquids [HOOCBMIm][Cl] and [HOOCMMIm][Cl]. By analyzing the effects impacting on the difficulty of lysine modifications upon different sites, including the solvent-accessible surface area, hydrogen bonds, and salt-bridges, a prediction model was achieved. The prediction acquired the exact number of modified lysine (4 and 9 respectively) and the specific modification sites in the ionic liquids [HOOCBMIm][Cl] and [HOOCMMIm][Cl] modification systems, respectively, which are consistent with the results of our previous studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busto E, Gotor-Fernández V, Gotor V (2000) Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 39:4504–4523

    Article  Google Scholar 

  2. Zheng GW, Xu JH (2011) New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Curr Opin Biotechnol 22:784–792

    Article  CAS  Google Scholar 

  3. Goswami D, Basu JK, De S (2013) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33:1–16

    Article  Google Scholar 

  4. Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200

    Article  CAS  Google Scholar 

  5. Díaz-Rodríguez A, Davis BG (2011) Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol 15:211–219

    Article  Google Scholar 

  6. Chalker JM, Bernardes GJ, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    Article  CAS  Google Scholar 

  7. Bekhouche M, Doumèche B, Blum LJ (2010) Chemical modifications by ionic liquid-inspired cations improve the activity and the stability of formate dehydrogenase in [MMIm][Me2PO4]. J Mol Catal B Enzym 65:73–78

    Article  CAS  Google Scholar 

  8. Bekhouche M, Blum LJ, Doumèche B (2011) Ionic liquid-inspired cations covalently bound to formate dehydrogenase improve its stability and activity in ionic liquids. ChemCatChem 3:875–882

    Article  CAS  Google Scholar 

  9. Zou B, Hu Y, Jiang L, Jia R, Huang H (2013) Mesoporous material SBA-15 modified by amino acid ionic liquid to immobilize lipase via ionic bonding and cross-linking method. Ind Eng Chem Res 52:2844–2851

    Article  CAS  Google Scholar 

  10. Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H (2013) Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids. ACS Catal 3:1976–1983

    Article  CAS  Google Scholar 

  11. Jia R, Hu Y, Liu L, Jiang L, Huang H (2013) Chemical modification for improving activity and stability of lipase B from Candida antarctica with imidazolium-functional ionic liquids. Org Biomol Chem 11:7192–7198

    Article  CAS  Google Scholar 

  12. Hu Y, Yang Y, Jia R, Ding Y, Li S, Huang H (2014) Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase. Bioproc Biosyst Eng. doi:10.1007/s0449-014-1134-4

  13. Mogharrab N, Ghourchian H, Amininasab M (2007) Structural stabilization and functional improvement of horseradish peroxidase upon modification of accessible lysines: experiments and simulation. Biophys J 92:1192–1203

    Article  CAS  Google Scholar 

  14. Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC (1996) Lipase activation by nonionic detergents the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem 271:18007–18016

    Article  CAS  Google Scholar 

  15. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theor Comput 7:4026–4037

    Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GB, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C. 02. Gaussian Inc., Wallingford

    Google Scholar 

  17. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  18. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Google Scholar 

  19. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447

    Article  CAS  Google Scholar 

  20. Oostenbrink C, Soares TA, van der Vegt NF, van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284

    Article  CAS  Google Scholar 

  21. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  CAS  Google Scholar 

  22. Berendsen H, Postma J, van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces, vol 11. D. Reidel Publishing Company, Dordrecht, pp 331–342

    Google Scholar 

  23. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  24. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  25. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  26. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14107

    Article  Google Scholar 

  27. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  29. DeLano WL (2002) The PyMOL molecular graphics system, version 1.5.0.4. Schrödinger, LLC, Portland

    Google Scholar 

  30. Vidya P, Chadha A (2009) The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis. J Mol Catal B Enzym 57:145–148

    Article  CAS  Google Scholar 

  31. Zhao J, Li XQ, Xiu ZL (2009) Specific-site PEGylation of hirudin on ion-exchange column and theoretical prediction and analysis of modified sites by molecular dynamics simulation. Chem J Chin Univ 7:1410–1416

    Google Scholar 

  32. O’Brien AM, Ó’Fágáin C, Nielsen PF, Welinder KG (2011) Location of crosslinks in chemically stabilized horseradish peroxidase: implications for design of crosslinks. Biotechnol Bioeng 76:277–284

    Article  Google Scholar 

  33. Rahman RNZA, Tejo BA, Basri M, Rahman MBA, Khan FS, Zain M, Siahaan TJ, Salleh AB (2004) Reductive alkylation of lipase. Appl Biochem Biotech 118:11–20

    Article  CAS  Google Scholar 

  34. Suckau D, Mak M, Przybylski M (1992) Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc Natl Acad Sci U.S.A. 89:5630–5634

    Article  CAS  Google Scholar 

  35. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  CAS  Google Scholar 

  36. Shuvaev VV, Fujii J, Kawasaki Y, Itoh H, Hamaoka R, Barbier A, Zieqler O, Siest G, Taniquchi N (1999) Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. BBA-Mol Basis Dis 1454:296–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation for Distinguished Young Scholars of China (No. 21225626), the Hi-Tech Research and Development Program of China (863 Program, 2011AA02A209), the National Natural Science Foundation of China for Young Scholars (Grant No. 21106064), the National Basic Research Program of China (2011CB710800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu-Jia Zhang or Yi Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, YG., Zhang, Y., Zhang, HM., Huang, H., Zhang, LJ., Hu, Y. (2015). Prediction of Lysine Acetylation Sites in Porcine Pancreas Lipase Modified by the Ionic Liquids Using Molecular Dynamics Simulations. In: Zhang, TC., Nakajima, M. (eds) Advances in Applied Biotechnology. Lecture Notes in Electrical Engineering, vol 333. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46318-5_39

Download citation

Publish with us

Policies and ethics