Skip to main content

Process-Integrated Heat Treatment of Hot Forged Components

  • Chapter
  • First Online:
60 Excellent Inventions in Metal Forming

Abstract

Classical hot forging process chains for the manufacturing of high performance components consist of numerous heating and cooling cycles. These cycles lead to a high optimization potential of ecological and economical aspects. Hereby, the heat of the hot forging process can be used for an integrated final heat treatment of the forged components. Depending on the cooling rate different microstructures can be set in steel forgings. By an isothermal heat treatment after a rapid and controlled cooling a bainitic microstructure can be set, which combines high strength with high toughness of the material. With the numerical simulation of the microstructural transformation, from the austenitic starting phase into the bainitic microstructure, an optimization of the process development of hot forging processes with a subsequent heat treatment can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, Fr.-W., Doege, E., Schmidt-Jürgensen, R., Dähndel, H., van Well, M., 2003, Auswirkungen einer Integration der Wärmebehandlung auf die Prozesskette zur Zahnradherstellung durch Präzisionsschmieden, International Conference on Accuracy in Forming Technology ICAFT 2003, Berichte aus dem IWU Band 22, Chemnitz

    Google Scholar 

  2. Bach, Fr.-W., Behrens B.-A., Gretzki T., Hassel T., Odening, D., 2009, Integrierte Wärmebehandlung komplexer Präzisionsschmiedebauteile mittels einer prozess- und geometrieangepassten Zwei-Phasen-Spraykühlung, International Conference on Accuracy in Forming Technology ICAFT 2009, Berichte aus dem IWU Band 52, Chemnitz

    Google Scholar 

  3. Behrens, B.-A., Olle, P., Götze, T., 2008, Simulation der Mikrostruktur und des Verzugs geschmiedeter Bauteile, UTF Science; Ausgabe 4/2008, Meisenbach Verlag, Bamberg

    Google Scholar 

  4. J. Ditmann. 2002, Mikrostruktur und mechanische Eigenschaften von geschmiedeten Bauteilen, Leibniz Universität Hannover, Dissertation, Hannover

    Google Scholar 

  5. Denis, S., Gautier, E., Simon, A., Beck, G., 1985, Stress-phase transformations interactions – principles, modelling, and calculation of internal stresses, Materials Science and Technology

    Google Scholar 

  6. Reti, T., 2002, Residual Stresses in Carburized, Carbonitrided, and Case-Hardened Components, In: Totten, George E., Maurice A. H. Howes und Tatsuo Inoue (Herausgeber): Handbook of Residual Stress and Deformation of Steel, S. 190–208, ASM International, Materials Park, Ohio

    Google Scholar 

  7. Avrami, M., 1940, Kinetics of phase change, Journal of Chemical Physics, S. 1103–1112

    Google Scholar 

  8. Johnson, W. A., Mehl, R. F., 1939, Reaction kinetics in process of nucleation and growth, Transaction AIME 135, S. 416–458

    Google Scholar 

  9. Koistinen, D.P., Marburger, R.E., 1959, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, S. 59–60

    Google Scholar 

  10. Behrens, B.-A., Bonk, C., Frischkorn, C., Grbic, N., Huskic, A., Kazhai, M., Moritz, J., Neumann, A., Schrödter, J., Bouguecha, A., 2014 , Aktuelle Forschungsergebnisse am Institut für Umformtechnik und Umformmaschinen, 21. Umformtechnisches Kolloquium Hannover – Industrie und Wissenschaft – Gemeinsam die Zukunft gestalten, S. 9–32

    Google Scholar 

  11. Fischer, M., Dickert, H. H., Bleck, W., Huskic, A., Kazhai, M., Hadifi, T., Bouguecha, A., Behrens, B.-A., Labanova, N., Felde, A., Liewald, M., Egorov, F., Garbrecht, M., Brinksmeier, E., Reimche, W., Bruchwald, O., Frackowiak, W., Maier, H. J., Bucquet, T., Hinrichs, B., Fritsching, U., Hoja, T., Hoffmann, F., Zoch, H.-W., 2014, EcoForge: Energieeffiziente Prozesskette zur Herstellung von Hochleistungs-Schmiedebauteilen, Journal of Heat Treatment and Materials HTM, S. 209–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd-Arno Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huskic, A., Kazhai, M., Behrens, BA. (2015). Process-Integrated Heat Treatment of Hot Forged Components. In: Tekkaya, A., Homberg, W., Brosius, A. (eds) 60 Excellent Inventions in Metal Forming. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46312-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46312-3_65

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46311-6

  • Online ISBN: 978-3-662-46312-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics