Advertisement

Mit Wissenschaft Grenzen überwinden – die Wasserkrise im Nahen Osten

  • Katja TielbörgerEmail author
Chapter
  • 3.6k Downloads

Zusammenfassung

Die Jordanregion steckt in einer Wasserkrise. Wasser ist natürlicherweise knapp und wird durch Bevölkerungswachstum und Klimawandel knapper; die politische Lage erschwert eine regionale Zusammenarbeit. Das GLOWA Jordan River Project hat in zwölf Jahren Forschung Wege aus der Wasserkrise aufgezeigt. Es wurden regionale Klimaszenarien entwickelt und so das Thema Klimawandel erstmals auf die nationalen Agenden gesetzt. Mit dem Entscheidungsunterstützungssystem WEAP und dem GLOWA JR Atlas hat das Projekt Jordanien, Palästina und Israel wissenschaftsbasierte Werkzeuge zur nachhaltigen Wasser- und Landnutzung hinterlassen. Der größte Erfolg des Projektes führte zur Nominierung für den Deutschen Nachhaltigkeitspreis: Bis zu 15 Ministerien aus den drei Ländern beteiligten sich an einem dauerhaften grenzüberschreitenden Dialog und entwickelten die Vision eines regionalen Klimafolgenforschungszentrums, welches durch die drei Regierungen gestützt und durch eine neutrale deutsche Seite moderiert werden soll.

Literatur

  1. 1.
    Abusaada MJ (2011) Flow dynamics and management options in stressed carbonate aquifer system, the Western Aquifer Basin, Palestine. Doktorarbeit, Universität Göttingen. http://nbn-resolving.de/urn:nbn:de:gbv:7-webdoc-3030-6
  2. 2.
    Alcamo J (2009) Environmental futures: the practice of environmental scenario analysis. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Al-Omari A, Salman A, Karablieh E (2014) The Red Dead Canal project: an adaptation option to climate change in Jordan. Desalin Water Treat 52:2833–2840CrossRefGoogle Scholar
  4. 4.
    Claus C, Tielbörger K (2011) Zehn Jahre erfolgreiche Forschung zum Klimawandel im Jordaneinzugsgebiet. Hydrol Wasserbewirtsch H6:328–333Google Scholar
  5. 5.
    Claus C, Braun A, Schloz D, Tielbörger K (Hrsg) (2014) GLOWA JR Atlas: results of the GLOWA Jordan river Project. http://download.glowa-jordan-river.com/Atlas/glowajordanriver.zip
  6. 6.
    Coyne et Bellier, Tractebel Engineering, Kema (2012) Red Sea- Dead Sea water conveyance study program feasibility study. Draft Final feasibility Study Report – Summary. World Bank Report No. 12 147 RP 04Google Scholar
  7. 7.
    Doppler W, Salman AZ, Al-Karablieh E, Wolff H-P (2002) The impact of water price strategies on irrigation water allocation under risk: the case of Jordan valley. Agric Water Manage 55(3):171–182CrossRefGoogle Scholar
  8. 8.
    Falkenmark M, Rockström J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Resour Plann Manage 132:129–132CrossRefGoogle Scholar
  9. 9.
    Falkenmark M, Lundquist J, Widstrand C (1989) Macro-scale water scarcity requires micro-scale approaches: aspects of vulnerability in semi-arid development. Nat Resour Forum 13:258–267CrossRefPubMedGoogle Scholar
  10. 10.
    FAO (2003) Review of world water resources by country. Water Reports Vol 23: Food and Agricultural Organization of the United Nations, Rome, ItalyGoogle Scholar
  11. 11.
    FAO (2013) FAOSTAT – pilot version. Food and Agricultural Organization of the United Nations, Rome, Italy. http://faostat3.fao.org
  12. 12.
    Fleischer A, Sternberg M (2006) The economic impact of global climate change on mediterranean rangeland ecosystems: a space-for-time approach. Ecol Econ 59(3):287–295. doi:10.1016/j.ecolecon.2005.10.016CrossRefGoogle Scholar
  13. 13.
    Fleischer A, Lichtman I, Mendelsohn R (2008) Climate change, irrigation, and Israeli agriculture: will warming be harmful? Ecol Econ 65(3):508–515. doi:10.1016/j.ecolecon.2007.07.014CrossRefGoogle Scholar
  14. 14.
    Gunkel A, Lange J (2012) New insights into the natural variability of water resources in the Lower Jordan river basin. Water Resour Manage 26:963–980CrossRefGoogle Scholar
  15. 15.
    Hoff H, Joyce B, Bonzi C, Tielbörger K (2011) A water resources planning tool for the Jordan river basin. Water 3:718–736CrossRefGoogle Scholar
  16. 16.
    IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlomer S, von Stechow C, Zwickel T, Minx JC (Hrsg) Climate change 2014, mitigation of climate change. Contribution of working group III to the Fifth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Kaminski J, Kan I, Fleischer A (2012) A structural land-use analysis of agricultural adaptation to climate change: a proactive approach. Am J Agric Econ 95:70–93CrossRefGoogle Scholar
  18. 18.
    Klepper G (Hrsg) (2011) Global change research in Germany 2011. German National Committee on Global Change Research (NKGCF), Kiel Institute for the World Economy. http://www.nkgcf.org/files/downloads/GC-Research%20in%20Germany%202011.pdf. Zugegriffen: 11. Sept. 2013
  19. 19.
    Koch J, Wimmer F, Onigkeit J, Schaldach R (2012) An integrated land-use system model for the Jordan river region. In: Appiah-Opoku S (Hrsg) Environmental land use planning. InTech Open Science, RijekaGoogle Scholar
  20. 20.
    Köchy M, Mathaj M, Jeltsch F, Malkinson D (2008) Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes. Reg Environ Change 8(2):73–87. doi:10.1007/s10113-008-0048-6CrossRefGoogle Scholar
  21. 21.
    Kummu M, Ward PJ, de Moel H, Varis O (2010) Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett 5:034006CrossRefGoogle Scholar
  22. 22.
    Lange J, Husary S, Gunkel A, Bastian D, Grodek T (2012) Potentials and limits of urban rainwater harvesting in the Middle East. Hydrol Earth Syst Sci 16(3):715–724CrossRefGoogle Scholar
  23. 23.
    Liebe J, Laube W, Leemhuis C, Youkhana E, Rogmann A, Arntz C, Vlek PLG (2008) Volta: implementation of a Volta basin water allocation system for transboundary water management. In: Hydrology and Water Resources Programme (HWRP) of WMO (Hrsg) German National Committee for the International Hydrological Programme (IHP) of UNESCO. GLOWA Global change and the hydrological cycle. IHP/HWRP-Berichte 7:50–51Google Scholar
  24. 24.
    Ludwig F, van Slobbe E, Cofino W (2014) Climate change adaptation and integrated water resources management in the water sector. J Hydrol 518:235–242CrossRefGoogle Scholar
  25. 25.
    Mauser W, Stoeber S, Barthel R, Ernst A (2008) Danube: the future of low-flow in the Upper-Danube basin. In: Hydrology and Water Resources Programme (HWRP) of WMO (Hrsg) German National Committee for the International Hydrological Programme (IHP) of UNESCO. GLOWA Global change and the hydrological cycle. IHP/HWRP-Berichte 7:35–36Google Scholar
  26. 26.
    Menzel L, Törnros T (2012) The water resources of the Eastern Mediterranean: present and future conditions. In: Rausch R, Schüth C, Himmelsbach T (Hrsg) Hydrogeology of arid environments. Borntraeger Science Publishers, Stuttgart, S 97–100Google Scholar
  27. 27.
    Menzel L, Koch J, Onigkeit J, Schaldach R (2009) Modelling the effects of land-use and land-cover change on water availability in the Jordan river region. Adv Geosci 21:73–80CrossRefGoogle Scholar
  28. 28.
    Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  29. 29.
    Nortcliff S, Black E, Potter R (2011) Current water demands and future strategies under changing climatic conditions. In: Mithen S, Black E (Hrsg) Water, life and civilisation: climate, environment, and society in the Jordan valley. International Hydrology Series. Cambridge University Press, New YorkGoogle Scholar
  30. 30.
    Onigkeit J, Simon KH, Alcamo J, Gramberger M, Tieleman K, Tielbörger K (2014) Strategic participative scenario development as a method to integrate science and IWRM – lessons learnt from a case study in the Jordan river region (Im Druck)Google Scholar
  31. 31.
    Rieland M (2004) Das BMBF-Programm GLOWA: Instrumente für ein vorausschauendes Management großer Flusseinzugsgebiete. Hydrol Wasserbewirtsch 48(H2):83–84Google Scholar
  32. 32.
    Rimmer A (2007) Systems hydrology models for the upper catchments of the Jordan river and Lake Kinneret, Israel. Isr J Earth Sci 56(1):1–17. doi:10.1560/IJES.56.1.1CrossRefGoogle Scholar
  33. 33.
    Salman AZ, Al-Karablieh EK, Al-Zoubi AS, Tabieh MA (2013) An assessment of the potential consequences of climate change on the economics of irrigated agriculture in Northern Jordan valley. SWUP-MED Final Conference. Sustainable water use for securing food production in the mediterranean region under changing climate. Agadir, Morocco, 11–15 March 2013. http://www.swup-med.dk
  34. 34.
    Samuels R, Smiatek G, Krichak S, Kunstmann H, Alpert P (2011) Extreme value indicators in highly resolved climate change simulations for the Jordan river area. J Geophys Res – Atmos 116. doi:10.1029/2011JD016322Google Scholar
  35. 35.
    Schacht K, Gönster S, Jüschke E, Chen Y, Tarchitzky J, Al-Bakri J, Al-Karablieh E, Marschner B (2011) Evaluation of soil sensitivity towards the irrigation with treated wastewater in the Jordan river region. Water 3:1092–1111CrossRefGoogle Scholar
  36. 36.
    Smiatek G, Kunstmann H, Heckl A (2011) High-resolution climate change simulations for the Jordan river area. J Geophys Res 116:D16111CrossRefGoogle Scholar
  37. 37.
    Speth P, Christoph M, Diekkrüger B (Hrsg) (2010) Impacts of global change on the hydrological cycle in West and Northwest Africa. Springer, S 675Google Scholar
  38. 38.
    Tielbörger K, Fleischer A, Menzel L, Metz J, Sternberg M (2010) The aesthetics of water and land: a promising concept for managing scarce water resources under climate change. Philos Trans Royal Soc A 368:5323–5337CrossRefGoogle Scholar
  39. 39.
    Tielbörger K, Bilton MC, Metz J, Kigel J, Holzapfel C, Lebrija-Trejos E, Konsens I, Parag HA, Sternberg M (2014) Middle-Eastern plant communities tolerate nine years of drought in a multi-site climate manipulation experiment. Nat Commun. doi:10.1038/ncomms6102PubMedCentralPubMedGoogle Scholar
  40. 40.
    Törnros T, Menzel L (2013) Characterizing droughts under current and future climates in the Jordan river region. Hydrol Earth Syst Sci Discuss 10:5875–5902CrossRefGoogle Scholar
  41. 41.
    UN (2013) World population prospects: the 2012 revision, DVD edition. United Nations (UN) Department of Economic and Social Affairs, Population Division. http://esa.un.org/unpd/wpp/index.htm. Zugegriffen: 18. Sept. 2013
  42. 43.
    Wechsung F, Kaden S, Behrendt H, Klöcking B (Hrsg) (2008) Integrated analysis of the impacts of global change on environment and society in the Elbe river basin. Weißensee Verlag, Berlin, S 401Google Scholar
  43. 42.
    von Witsch U (2008) GLOWA: a German initiative to meet a global challenge. The innovative GLOWA approach. In: Hydrology and Water Resources Programme (HWRP) of WMO (Hrsg) German National Committee for the International Hydrological Programme (IHP) of UNESCO. GLOWA Global change and the hydrological cycle. IHP/HWRP-Berichte 7:12–14Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Universität TübingenTübingenDeutschland

Personalised recommendations